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Abstract

Simultaneous Localisation and Mapping (SLAM) began as a technique to

enable real-time robotic navigation on previously unexplored environments.

The created maps however were designed for the sole purpose of localising

the robot (i.e. what is the position and orientation of the robot in relation to

the map) and several systems demonstrated the increasing descriptive power of

map representations, which on vision-only SLAM solutions consisted of simple

sparse corner-like features as well as edges, planes and most recently fully dense

surfaces that abandon the notion of sparse structures altogether.

Early sparse representations enjoyed the benefit of being simple to main-

tain as features could be added, optimised and removed independently while

being memory and compute efficient, making them suitable for robust real-time

camera tracking that relies on a consistent map. However, sparse representa-

tions are limiting when it comes to interaction, as for example, a robot aiming

to safely navigate in an environment would need to sense complete surfaces in

addition to empty space. Furthermore, sparse features can only be detected on

highly-textured areas and during slow motion.

Recent dense methods overcome the limitations of sparse methods as they

can work in situations where corner features would fail to be detected due to

blurry images created during rapid camera motion and also enable to correctly

reason about occlusions and complete 3D surfaces, thus raising the interac-

tion capabilities to new levels. This is only possible thanks to the advent of

commodity parallel processing power and large amount of memory on Graphic

Processing Units (GPUs) that needs careful consideration during algorithm de-

sign.

However, increasing the map density makes creating consistent structures

more challenging due to the vast amount of parameters to optimise and the

interdependencies amongst them. More importantly, our interest is in making

interaction even more sophisticated by abandoning the idea that an environment

is a dense monolithic structure in favour of one composed of discrete detachable

objects and bounded regions having physical properties and metadata.

This work explores the development of a new type of visual SLAM system

representing the map with semantically meaningful objects and planar regions

which we call Dense Semantic SLAM, enabling new types of interaction where

applications that can go beyond asking the question of “where am I” towards

“what is around me and what can I do with it”. In a way it can be seen as a

return to lightweight sparse-based representations while keeping the predictive

power of dense methods with added scene understanding at the object and

region levels.
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Chapter 1

Introduction

Simultaneous Localisation and Mapping (SLAM) is the process of self-localising a

moving entity in a previously unknown and uncontrolled environment. Examples

of those entities include: automatic vacuum cleaners, domestic robots, quad-copters

and spatially-aware smart phones or eyewear. An uncontrolled environment is one

that has not been previously instrumented to aid navigation for instance by means of

beacons, markers or motion-capture cameras. This problem is normally simplified by

the general assumption that the environment is rigid and static and the only moving

entity (e.g. the robot) has no previous knowledge of the environment structure.

In order to self-localise, such an entity will need to incrementally create a map of

the environment as it moves. This map consists of a unified and persistent represen-

tation of the surroundings, and is commonly structured to be immediately queried

for keeping track of the entity’s motion.

The fundamental utility of the map is at the very minimum to serve localisation.

Several SLAM systems have been developed over the years to make this process

more robust, extensible and in general more efficient. Our work focuses around a

narrower yet practical type of SLAM system using a single hand-held camera as

the sole sensory input (commonly referred to as Visual SLAM ) which can perform

consistent, drift-free localisation and mapping in real-time at room-size scales.1

1This is in contrast to methods like visual odometry that can estimate incremental motion
accurately but suffer long-term drift as they do not attempt to build a consistent map.
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1. Introduction

As we will see in more detail in Section 1.2, SLAM has evolved as a means to

unify the previously disjoint processes of mapping and tracking. Sensor technology,

computing resources, but more importantly application domains themselves have

shaped the approaches over the years. Solutions to address a particular domain

are not necessarily readily applicable to another. For example, initial exploration

of SLAM was rooted in the necessity of robots to instantly sense obstacles in a

previously unknown environment and move freely in two dimensional space. These

methods were developed before the availability of digital cameras and relied mostly

on sonar readings and wheel odometry. Meanwhile, approaches to faithfully re-

construct 3D spaces out of photographs for visualisation purposes had no need to

achieve immediate results to be valuable. These two parallel developments however

have found common ground and are now seen as equivalent formulations of the same

underlying problem of building a static map and estimating precise sensor position

within it.

What we propose in this thesis is to shape a SLAM approach for the purpose

of interaction via semantic interpretation of environments in real-time that we call

Dense Semantic SLAM : a system capable of identifying meaningful discrete elements

in a map using all available sensory information within the loop of SLAM itself, for

the purpose of self-localisation and complex interaction. Not only are we interested

in knowing the exact position and orientation of an entity in its environment, but

equally important to us is to reason about the nature of the map structure that

is incrementally being built, as we expect that any form of emergent intelligence

between entities depends on their capability to anticipate the behaviour of the sensed

world.

In doing so, several assumptions that have previously constrained earlier methods

can be re-examined and improved. For instance, while most SLAM approaches as-

sume a static environment and treat moving parts as outliers, we can anticipate that

certain objects such as people and cars are likely to move and therefore consciously

rely on background areas that are truly static for the purpose of determining reliable

ego-motion. Or in order to achieve scalability and memory efficiency, knowledge of

similar object shapes such as repeated chairs or even planar structures can be mod-

elled more efficiently by sharing common geometric properties. More profound is the

impact such anticipation could have if it were to enable robots to attempt to move

obstructing objects that are in fact movable or to carefully operate in the presence

10



1.1. Dense Semantic SLAM enabled applications

of people.

1.1 Dense Semantic SLAM enabled applications

Moving beyond the goal of localising an entity would unlock the potential of more

complex interactions between many cooperating agents in 3D space, rather than

just using the resulting map for the sole purpose of tracking. Here we highlight a

few applications enabled by the use of the Dense Semantic SLAM framework we

propose:

1. Object-aware personal robotics. We envision future service robots that

can safely move in uncontrolled environments like offices and houses, are able

to interpret the nature of objects around and use this to achieve more sophisti-

cated activities like moving suitable objects to make way (e.g. cleaning below

a table initially obstructed by chairs), grasping them from the correct region

or anticipating the likely location of people ahead of time for enhanced safety.

Raw shape and colour information obtained from cameras are not enough to

carry out these tasks. We believe that a database of objects annotated by

humans with semantic properties like typical use, weight, grasping regions or

strength will enable robots to leapfrog the limitations of pure vision systems.

2. Object-aware augmented reality (AR). AR has been widely used to cor-

rectly position virtual elements on top of real video and several commercial

applications are now available ranging from games to walking directions around

the city. But particularly in video games where the focus is on interactivity

rather than passive visualisation, very little progress has been made to enable

virtual entities to interact with the real world in believable ways. The use of

objects in the loop of SLAM would enable next-generation AR games where

virtual elements can change their behaviour depending on what objects they

are interacting with (e.g. bouncing differently on hitting a wall or a pillow).

A complete realisation of this approach would be to create a scene graph rep-

resentation of an environment from visual data only, which is incrementally

built and queried in real-time.2

2A scene graph is a tree-like data structure commonly used to represent the internal state of
a video game, composed of passive and active objects (or actors), shared geometric data, lighting
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1. Introduction

3. Realistic virtual teleconferencing. We envision a situation where partici-

pants in a video conference wearing smart eyewear are able to perceive remote

users (rendered with avatars) as being physically present in the host environ-

ment which is mapped at the level of objects. For the host participants the

experience resembles that of augmented reality, whereas for the guest partici-

pants (who are not actually physically present) the experience is that of virtual

reality. Another benefit of the approach is the increased amount of compres-

sion that can be achieved by modelling the underlying image formation process

and transmitting only state transitions. A full realisation of this usage sce-

nario would require overcoming the uncanny valley with realistic modelling

and animation of human characters.

4. Mixed-reality shared spaces. A semantic SLAM system used in conjunc-

tion with smart eyewear would be able to interpret the shape of objects and

the extent of surfaces and project information onto the environment while us-

ing tracking information to render perspectively-correct views to all the users

sharing the object-level map in real-time. This form of immersive computing

contrasts with current ways to display information with devices like Google

Glass where widgets float in front of the wearer, with the possibility of dan-

gerously obstructing their field of view while walking through space.

5. Virtual replacement of environment structures. Understanding envi-

ronment structures like walls, floor, ceiling and furniture would enable a sys-

tem to generate novel renderings of the real world, for instance by virtually

changing the type of carpet or colour of walls, or by eliminating structures

altogether (e.g. unwanted furniture) and seeing through walls.

These exciting novel potential applications would only begin to emerge once dense

semantic SLAM becomes widely available to users and robotics scenarios, having

been engineered for mobile use and scalability while keeping real-time performance.

In the following section we will review the evolution of traditional SLAM systems

that constituted the main building blocks to elaborate complex yet real-time systems

and have already captured the imagination of users with devices like self-driving cars,

sources, etc. An example scene graph subsystem commonly used in real-time graphics is OpenSG:
http://www.opensg.org/.
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1.2. The evolution of Visual SLAM

spatially-aware phones and autonomous vacuum cleaners that are beginning to be

introduced into the consumer world.

1.2 The evolution of Visual SLAM

Before the 1990s, robot localisation relied on a priori known maps of the envi-

ronments in which the entity was deployed. For example the work of Leonard

et al. performed robot localisation using a predefined map of geometric beacons

such as planes, corners and cylinders [86][87] sensed by sonar arrays. The task of

performing both localisation and mapping as part of the same simultaneous loop

remained challenging due to the correlated nature of both problems, since inaccura-

cies in one lead to incorrect results in the other, necessitating a sound probabilistic

model of their joint behaviour.

It was not until the pioneering work of Smith and Cheeseman in 1986 [148] and

Moutarlier and Chatila [111] in 1989 that the fundamental theoretical components

commonly present in modern SLAM systems were clearly defined. They proposed

to maintain joint probabilistic estimates for both map landmarks and sensor poses

that are refined over time as new noisy measurements arrive. Their proposed use of

the Extended Kalman Filter (EKF) [75] made it the mainstream framework upon

which many SLAM systems relied for the next 20 years [15][22][36][43][108][114]. For

example, in perhaps the first implementation of a SLAM system, Leonard et al. [88]

revisited their previous work and applied the EKF framework to successfully localise

a robot and simultaneously build a map of the scene using servo mounted sonar

sensors. The first systems that implemented fully joint EKF filters for SLAM on

real robots came towards the late 1990s such as [22][36][114].

The use of vision for mobile robot navigation can be traced back to the work

of Moravec in 1977 [109][110] for obstacle avoidance using image region matching.

Probably the first system which implemented full joint EKF SLAM approach using

vision was by Davison et al. in 1998 [36] which performed active vision to focus the

camera head on prominent features for building a 3D map and localising a wheeled

robot platform moving in 2D space (see Figure 1.1). Thanks to these developments,

future SLAM systems had the building blocks necessary to begin to move away from

wheeled robots with strong 2D motion assumptions.

13



1. Introduction

Figure 1.1: Robotic platform used in the active vision SLAM work of Davison
et al. [36] in 1998. c© Andrew Davison.

The DROID system developed by Harris and Pike [64] successfully builds 3D maps

from video sequences in real-time though it neglects correlations due to the common

camera motion and is therefore incapable of closing loops and correcting drift.

In 2003, Davison et al. presented a remarkable Visual SLAM system called Mono-

SLAM [37] (see Figure 1.2), being the first to demonstrate the use of a hand-held

monocular camera to perform long-term incremental real-time tracking and mapping

solution following the EKF approach and adopting image-based feature matching

and pose estimation techniques studied in the closely related field of Structure from

Motion (SfM). Due to the joint state estimation of both landmarks and camera

poses the system had limited scalability to no more than 100 features in order to

stay within the budget for real-time operation (the worst case complexity of filtering

methods like the EKF is proportional to the cube of the size of the state vector). An

earlier approach by Chiuso et al. [27] described a monocular visual SLAM system

based on the EKF assuming however that the features were always visible, while

Davison’s was able to initialise new features, re-detect them after periods of occlusion

and even handle small loop closures.

The sequential nature of the EKF that linearises the non-linear sensor and motion

models also produces errors, adding another factor to limit the scalability of filtering

approaches like MonoSLAM for creating larger maps. To address this, other work

focused on creating more limited sub-maps to compose larger ones (see for instance

Bosse et al. [16] and Clemente et al. [28]).

Rather than keeping an explicit map of landmarks, a different approach known as

14



1.2. The evolution of Visual SLAM

Figure 1.2: MonoSLAM [37][38] introduced in 2003, used a sparse set of corner
features measured from a monocular camera, mapped in 3D and used to keep track
of the 6 DoF sensor pose. c© Andrew Davison.

consistent poses was developed by Lu and Milios in 1997 [99]. This approach con-

sisted of keeping only pose-to-pose constraints generated after successful alignment

of consecutive range scan measurements. Similarly Agrawal et al. [3] and Grisetti

et al. [62] adopted a pose-graph optimisation approach that is able to distribute er-

rors across a graph of constraints once loop closures are detected. Closely related is

the work by Milford et al. on RatSLAM between 2003 and 2008 [105][106][107] where

a semi-metric topological map of the environment is kept, inspired by computational

models of rodents’ hippocampus.

Other prominent approaches that move away from a metric map representation

include that of Cummins et al. who developed a pure topological system called FAB-

MAP between 2007-2009 [32][33][34]. Here the captured images are transformed into

the space of appearance to build the map via a bags of words representation [147] and

used this to query the likelihood that new measurements came from known places of

the map or a new place, while taking into account the effect of perceptual aliasing

arising from common structures such as repeated wall patterns. This method is

useful during large scale exploration followed by loop closing as it is unlikely that

two identical places visited after a period of neglect will be associated based solely

on metric alignment as drifting errors are large.

As previously stated, structure from motion (SfM) is a closely related discipline

aiming to extract high fidelity 3D representations from a set of 2D images by means

of an offline joint optimisation process known as bundle adjustment. This enables

it to find optimal 3D point positions and camera poses that minimise reprojection

15



1. Introduction

Figure 1.3: Building Rome in a day. In the work of Agarwal et al. [2] from 2009,
thousand of internet images were collected to jointly optimise the 3D point position
and camera poses with bundle adjustment to faithfully reconstruct structures like
the Colosseum. c© Sameer Agarwal.

errors across the complete image set. It was formalised by Brown [21] in the area

of photogrammetry back in 1958 and was revisited by Triggs et al. in 1999 [158]

for the computer vision community. Bundle adjustment was applied in the work of

Fitzgibbon and Zisserman to recover camera poses from image sequences [52] and

Pollefeys et al. [124] for 3D reconstruction and self-calibration of cameras in 1998.

Notable recent work in this field includes that of Agarwal et al. in 2009 [2] entitled

‘Building Rome in a day’ that uses a collection of web images to generate convincing

reconstructions of cities (see Figure 1.3).

What makes SfM different to Visual SLAM is its emphasis on accuracy at the

expense of computation time, assuming all the data to process is already available

and therefore has no need to deal with the uncertainty in sequential estimation.

In addition, SfM assumes unordered image sets having feature correspondences at

long baselines, therefore temporal constraints are of little importance. Ideas from

SfM were nevertheless successfully applied to the real-time Visual SLAM domain

by McLauchlan and Murray [103] using a variable state-dimension filter able to add

or remove features as new image data arrives, and sliding window approaches like

Nister et al. [115] to locally apply bundle adjustment and achieve good quality visual

odometry in real-time without keeping a globally consistent map (which would drift

in the long run).

A cornerstone new system that fully embraced SfM’s bundle adjustment but
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1.2. The evolution of Visual SLAM

showed how it could be use in real-time for globally consistent maps is PTAM,

presented by Klein and Murray in 2007 [79]. As in MonoSLAM, PTAM represents

the map via sparse features detected and tracked using a single monocular camera

only, but it is able to substantially increase the features’ density thanks to the re-

alisation that mapping doesn’t need to occur at the same rate as localisation (see

Figure 1.4). This allows more processing time to be used for keeping a consistent

map by running bundle adjustment in a background thread, while a much lighter

tracking thread maintains frame-rate operation. A globally consistent map is kept

using keyframes that are sampled spatially rather than temporally and therefore the

system is reliable and fast under long operational periods within a limited space.

Improved EKF filtering methods like Eade and Drummond [43] as well as en-

hanced keyframe-based bundle adjustment methods like Konolige and Agrawal [80]

attacked the scalability, robustness and real-time performance of localisation via

sparsification of the maps. The method of Eade and Drummond coalesced obser-

vations into independent local nodes that are connected into a common graph for

global optimisation, while Konolige and Agrawal only kept a reduced set of relative

pose information via skeletons to approximate the larger system.

The choice between filtering-based methods and keyframe-based bundle adjust-

ment for achieving accurate mapping and localisation is therefore non-trivial. Stras-

dat et al. [149] offered some insights into the nature of both approaches and con-

ducted experiments leading to the conclusion that accurate localisation performance

is tightly coupled to the number of mapped landmarks and therefore any attempts

to improve the descriptive quality of maps will win. This is the reason why keyframe

approaches with their capability to optimise many more points in a map are a better

choice at modern processing levels.

Corner-like feature detection is a popular abstraction in computer vision to sim-

plify further image processing stages and has been extensively used in the previously

reviewed Visual SLAM methods. However corners can be limiting for understand-

ing smooth surface shapes and therefore precise occlusion handling. Furthermore,

detecting them is difficult in regions of low texture or due to sensory artefacts like

blur during fast motion.

Newer systems such as DTAM [113] and KinectFusion [112] presented in 2011 by

Newcombe et al. abandoned feature detection in favour of dense surface represen-
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1. Introduction

Figure 1.4: In PTAM presented by Klein and Murray in 2007 [79], mapping and
tracking are performed in parallel threads with the mapping back-end able to spend
more time to optimise many more points while the tracking front-end maintains
framerate performance. c© Georg Klein.

tations, aided by the vast and commodity GPU processing power (see Figure 1.5).

DTAM requires only a moving monocular camera and is able to generate depth

maps by combining several measurements following a non-convex optimisation pro-

cess that adds photometric error data terms and spatial regularisation to generate

smooth depth estimates in areas lacking texture. In KinectFusion, the sensor used

is able to directly extract depth samples in hardware even in areas of low texture

by projecting an infrared speckle pattern onto the environment. In both systems,

the extracted dense depth maps are further processed and merged into a unified 3D

model, followed by dense tracking to estimate motion using all the available pixel

information, thus making the system robust against fast motion and being naturally

occlusion-aware.3

It is precisely the sophistication achieved by the two previously described dense

SLAM systems and related platform technologies that inspired most of the work

described in this thesis. The arrival of commodity depth sensing devices like Kinect,

access to the massive parallelism of GPU’s and high quality mapping and tracking

results (as well as their limitations) obtained by algorithms like KinectFusion showed

us the path to devise the contributions described next.

3Motion estimation performed via efficient second-order minimisation (ESM) [100] in DTAM
and iterative closest point (ICP) in KinectFusion [25].
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1.3. Contributions

Figure 1.5: DTAM [113] (left) and KinectFusion [112] (right) developed by New-
combe et al. in 2011, redefined tracking and mapping as they were performed densely
without feature based abstractions allowing reasoning about smooth surfaces while
robustly tracking a camera even in the presence of motion blur. c© Richard New-
combe.

1.3 Contributions

With the navigation utility of mapping already in place it is time to move beyond

localisation towards interaction. Dense maps already provide substantial geometric

quality for smooth and robust navigation but the entities we are interested in are

certainly not just moving without purpose. An automatic vacuum cleaner’s task is

to clean the floor and it uses its map to track its motion while avoiding obstacles,

whereas a smart phone uses the sensory tracking information to present well regis-

tered augmented imagery on top of captured video to enhance the user’s perception.

Beyond obstacle avoidance and augmented representations, the entity’s interac-

tion with the environment could be further enhanced by making sense of the map

structure itself: what objects are present in the scene, how extensive is the floor,

how many steps are in a stairway, or can an object be moved and if so what is the

best grasping region? This level of awareness is the driving factor behind our novel

Dense Semantic SLAM approach that we contribute to the field.

Our journey towards semantic SLAM began by the realisation that many man-

made environments consist of repeated elements and it is wasteful to re-map them

from scratch. A background in video games development gave insights for repre-

senting complex virtual environments efficiently via instantiation, where a single

geometric model of an object is shared across lightweight copies. Furthermore,

19



1. Introduction

Figure 1.6: (left) SLAM++ [135] presented in 2013, maps scenes at the level of
objects that are used immediately as landmarks to keep track of the sensor pose.
(right) Dense Planar SLAM [134] presented in 2014, is able to detect planar regions
in real-time and extend them as a camera browses the scene while maintaining high
quality surface density.

to accelerate production times it is common to reuse pre-designed objects from a

database rather than modelling or animating them from the beginning. At this

stage, an initial attempt was to use the already mapped features from systems like

MonoSLAM or DTAM to query a database of objects and superimpose the matches

over the already built map.

SLAM is by definition a mobile system and tightly coupled to the available sensory

hardware and processing units. Therefore any attempt to improve performance

at the system level needs to consider the properties of measurements, algorithm

characteristics, processing throughput and power consumption. With this view, we

also explored implementing useful techniques for map optimisation such as bundle

adjustment on newer hybrid hardware architectures consisting of integrated CPUs

and GPUs.

With improved insight on the existing computing architecture landscape and the

limitations of optimising large-scaled maps, we returned to examine object-level

representations. This time however realising the advantages of using the objects

directly as map features and being part of the SLAM loop itself, bringing semantic

information and even higher levels of compression. This work led to the development

of ‘SLAM++: Simultaneous Localisation and Mapping at the Level of Objects’ (see

Figure 1.6 left).
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SLAM++ needed careful pre-processing for segmentation and the detection algo-

rithm limited its scalability to a handful of objects. Another recognition approach

based on random forests [5][18] was later explored to better take advantage of the

parallel processing power available and multi-class support. However interactive seg-

mentation was still an obstacle and techniques to tackle this were evaluated such as

GrabCut [132] and plane detection, using them inside the loop of SLAM itself lead-

ing to our newest system called ‘Dense Planar SLAM’ which is able to incrementally

expand planar representations of environments starting from limited measurements

(see Figure 1.6 right).

1.4 Publications

The following publications are the results of research carried during this PhD:

SLAM++: Simultaneous Localisation and Mapping at the Level of Ob-

jects [135]. Renato F. Salas-Moreno, Richard A. Newcombe, Hauke Strasdat, Paul

H. J. Kelly and Andrew J. Davison. Proceeding of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2013

Dense Planar SLAM [134]. Renato F. Salas-Moreno, Ben Glocker, Paul H. J.

Kelly and Andrew J. Davison. Proceeding of the International Symposium on Mixed

and Augmented Reality (ISMAR), 2014

1.5 Thesis Structure

The rest of the thesis is structured as follows. In Chapter 2 we provide an exten-

sive background review of key developments for 3D object recognition and semantic

labelling. This material influenced the development of real-time object and plane

recognition algorithms suitable for SLAM that were later applied in our SLAM++

and Dense Planar SLAM systems. Chapter 3 provides a description of mathemat-

ical notation, terminology and equations that serves as foundation for the rest of

the thesis. In this chapter we also review novel computer architectures and pro-

gramming models on which we base our work as the real-time constraints of SLAM

make algorithmic development tightly coupled to these technologies. Chapter 4 de-
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scribes our attempt to accelerate bundle adjustment on the now prevalent hybrid

GPU/CPU architectures for parallel computing. Chapters 5 and 6 describe the core

contributions of this thesis with SLAM++ and Dense Planar SLAM respectively.

Finally in Chapter 7 we hypothesize future work required in the short and long term

to make Dense Semantic SLAM even more interesting and applicable to real-world

scenarios and offer closing remarks of the outcome of this research.
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Chapter 2

Towards Dense Semantic

SLAM

Having introduced the aims of the thesis in Chapter 1 and reviewed the evolution

of Visual SLAM systems as they stood at the beginning of this research, we now

shift our attention to the recognition technology necessary to take us towards the

semantic capabilities we are seeking.

During initial stages of our research we began approaching semantic SLAM by

assuming that scenes are entirely made of objects and therefore reviewed several

techniques to enable detection and pose estimation of objects from a database,

potentially in real-time. We describe the reviewed methods in Section 2.1.

Later on we arrived at the conclusion that having object-level representations is

not enough to semantically describe man-made environments as most scenes consist

of large flat areas that can be more succinctly described parametrically without the

need of objects. Under this new approach, we reviewed methods for scene labelling

which we describe in Section 2.2.
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2. Towards Dense Semantic SLAM

2.1 Approaches for 3D Object Recognition

Recognising objects in images is a fundamental problem in computer vision and

different approaches have been widely documented in the literature. Our exploration

of this wide field has always been driven by certain ideal requirements on methods

which could be usable in a SLAM setting: real-time learning and prediction, precise

6 degrees of freedom (DoF) pose estimation, large-scale multiple class output and

robustness against clutter and partial occlusions.

Object recognition is required when no prior information exists regarding the pres-

ence (found or not), location (or pose) or identity of an object. It is not necessary

for instance when temporal information is available that could allow us to predict

the location of an object in a new image based on evidence from a previous frame (a

process known as tracking). However this prior information is not always reliable,

particularly when tracking is performed over long periods of time which could lead

to drift due to the accumulation of noise or total failure due to complete occlusion.

Therefore even when an object could be initially detected manually (from a canon-

ical pose or human annotation) it is always desirable to automate this process and

integrate it into the system loop to correct long-term errors.

Since the sought object doesn’t necessarily occupy a complete image, a common

approach consists of polling candidate locations across the full image and accumu-

lating evidence until the best candidates are extracted. Candidate poses are often

discretised to accelerate the recognition process and this could be good enough in

certain applications. Since we also require an accurate 6 DoF pose estimate of ob-

jects, an optimisation procedure is needed to minimise misalignment errors of the

candidate poses (provided they lie within the basin of convergence for the optimi-

sation procedure to find a solution). Under this view we can then describe object

detection as a process to bring likely objects towards the basin of convergence of a

pose optimisation algorithm.

Two main families of approaches for 3D object recognition exist in the literature

as categorised by Lepetit et al. [90]. The first one consists of sliding an exemplar

bounding box (sliding window) of a possible object view over an image until a

suitable location is achieved by comparing the exemplar and target image statistics

(we will refer to this as a global approach). The second one consists of testing

individual pixels or discrete features and their close neighbours followed by grouping
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2.1. Approaches for 3D Object Recognition

individual contributions to find peaks in a low-dimensional parameter space (we will

refer to this as a local approach). This categorisation is not exclusive as for example

newer part-based approaches first perform feature sampling and then extract area

statistics in small regions around the feature positions.

2.1.1 Global Approaches

Global approaches rely on statistics from all the pixels in a bounding box to de-

termine the likelihood of an object match. As such they can be susceptible to

background clutter or partial occlusions if the window does not enclose the object

precisely. Local approaches on the other hand rely on discrete pixels or features

and as such can be made more robust by extracting feature descriptors that are ro-

bust to viewpoint or illumination changes or by grouping only likely members (with

spurious matches removed via RANSAC [50] or geometric constraints).

Real-time global approaches are a popular choice for class specific detectors of

objects like faces. The remarkable algorithm by Viola and Jones [161] uses an

Adaboost cascade classifier based on simple Haar-like features to quickly reject un-

likely regions and direct more complex processing to good candidates. This is also

a learning-based method where a set of positive and negative samples are used to

train the classifier offline (usually a few hours) while prediction runs in real-time

thanks to the pre-computation of summed area tables of an image (also known as

an integral image) for fast computation of statistics via subtraction of image regions.

The Histogram of Gradients (HoG) method proposed by Dalal and Triggs [35]

describes objects by counting the gradient orientations of pixels within cells of an

image sample and normalising their response across group of cells (called blocks),

making the descriptor robust against changing illumination conditions and local

deformations. This method has been successfully applied to problems like pedestrian

detection.

Other interesting real-time detection algorithms using templates include the work

of Hinterstoisser et al. that is targeted at texture-less objects. Beginning with Dom-

inant Orientation Templates (DOT) [72] it encodes at each pixel of the template

and image the most dominant orientations inside a neighbourhood (discretised ori-

entations are used due to their robustness to illumination changes). This makes it
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robust against small deformations and shifting, and substantially reduces the num-

ber of test locations at which the template needs to be tested. The authors pay

special attention to modern computer architecture features to efficiently compute

error functions using single instruction multiple data (SIMD) bitwise operations,

achieving about 12 fps on a dual-core laptop for a few hundred templates repre-

sentative of an object. An extension known as LINE-MOD [71] uses multimodal

templates to complement the gradient information extracted from intensity images

(mainly found on the object contour) with surface normals extracted via depth sen-

sors like the Kinect (mainly found on the object interior). It further avoids cache

misses by the use of linearised response maps as detailed in [70]. Later work [73]

simplified the creation of templates from known 3D models and obtains refined

6 DoF pose estimates. This method automatically samples templates from a virtual

camera positioned around a hemisphere that encloses the object at multiple scales

(each template is also annotated with the known camera pose). Once the template

is matched at runtime, the annotated pose is retrieved and refined via volumetric

iterative closest point (ICP) [51].

In a similar spirit of improving the efficiency of sliding window approaches, Lam-

pert et al. [83] developed a branch-and-bound algorithm to partition the search space

of candidate windows hierarchically and reject those subsets whose upper-bounds

are inferior than a globally determined score.

Another way to reject unlikely windows is through the concept of Objectness,

first introduced by Alexe et al. [4], which is a measure to signal the presence of

an object of any class. They define an object as having certain cues such as well-

defined closed boundaries, appearance different from the background and saliency,

which are combined in a Bayesian framework to measure the objectness of a window

(sampled from the distribution of possible windows). A remarkable new procedure

by Cheng et al. [26] is well suited for mobile real-time applications as it is able

to estimate candidate windows at only 3ms on a laptop CPU while still achieving

subsequent detection rates above 96.2%. The authors noted that under the concept

of objects having a well defined closed-boundary, their normalised gradients are

strongly correlated and therefore likely windows can be obtained by filtering the

quantised search space with an 8 × 8 normalised gradient learned from annotated

object data, which can be applied quickly with few bitwise operations.
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2.1. Approaches for 3D Object Recognition

2.1.2 Local Approaches

As previously described, local approaches rely on sampling individual pixel contri-

butions. Some algorithms first extract salient features that are informative while

others consider dense sampling of every pixel’s contribution. An initial feature ex-

traction phase reduces the complexity during object recognition as only the most

informative pixels are passed through the pipeline. However, feature extraction is

not always reliable, especially during camera motion due to blurring effects and usu-

ally only works well on highly textured objects. For that reason, more recent work

skips feature extraction altogether and consider every pixel information densely as

we will see later.

An approach that we initially consider for detecting objects in our SLAM++

system (see Chapter 5) was based on the method developed by Drost et al. [41]

and substantially accelerated using GPU-Compute. Drost’s method consists of first

describing an object shape globally with a data structure encoding the space of all

possible Point-Pair Feature (PPF) values of the object. PPF’s are extracted by

pairing every two vertices of the object mesh and computing for each pair a four-

dimensional descriptor of the relative position and normals of the oriented vertices.

The PPF vectors are grouped in a hash-table, where each entry holds a group

of similar descriptors hashed by the discretised PPF value, allowing constant-time

access to any group. Once the global shape description is created, detecting an

object at runtime consists of first identifying reference points on the scene depth

image and then pairing them with every other point of the image (usually randomly

sampled) to extract PPF and use their values to query similar ones in the model

via the hash table. The similar PPF are used to cast votes in an accumulator space

in a manner similar to the Generalised Hough Transform [8], indexed by the model

reference point and the angle that would put matching vectors into alignment after

pivoting around the reference point normal. Peaks in this accumulator correspond

to likely scene reference points where most model PPF vectors commonly vote on

a pivot. Once peaks are identified, the 3D object pose can be extracted via simple

model to scene transformations.

Local methods like the one described above rely on having a fixed 3D model of

the object to detect and the availability of depth information in the test images; as

such they are normally known as Shape Matching in the literature. The benefits of
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these approaches are that they do not involve a lengthy training procedure and are

simple to implement. When such geometric information is not available, or when the

object intra-class variability is high (e.g. shapes of people), learning-based methods

have been shown to exhibit better performance and are described next.

Among the best examples for performing object recognition via an initial feature

extraction phase is the seminal work of Lepetit et al. [91]. He proposed a method to

reformulate feature matching as a classification process allowing substantial runtime

speed-up as most of the complexity of the matching methods is moved into a training

phase and only compact class representations are needed at test time. It also allows

relaxation of the planarity assumption considered in previous approaches. To cast

this problem as a classification method, each class is considered to be different

views of a keypoint (extracted via the Harris corner detector). Interestingly the use

of synthetically generated viewsets proved to work remarkably well and could be

cheaply created from 3D texture mapping techniques.

To keep the misclassification rate low only the most characteristic keypoints are

kept which are those that can be detected across many views. Illumination invari-

ance is achieved by normalising the view intensities such that all views have the

same minimum and maximum intensity. The generated viewsets are processed via

PCA followed by K-means clustering to compactly represent them. To find the

corresponding point, a nearest neighbour search is performed on the set of means.

The whole object detection procedure takes 200ms on a 2GHz CPU compared to 1s

using a SIFT based approach [97].

The combined PCA, K-means and nearest neighbour search classification pro-

cedure was later replaced by random forests [5][18] and described in [90] (we will

describe in more detail the theory behind random forests in Section 2.3). This new

approach is more robust and faster allowing real-time object tracking by detection.

Increased robustness is achieved by only keeping stable keypoints across different

scales. Runtime speeds are improved to 40 ms however training required about

15 minutes when growing 20 trees with the classic information gain approach for up

to depth 10 and 200 keypoints with 100 views each.

In their follow-up work [89] Lepetit et al. picked only random tests instead of the

entropy minimisation approach described previously, which slightly reduces detec-

tion performance but significantly decreases training time to a few seconds rather
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than minutes. Similarly Ozuysal et al. [123] followed the same random tests ap-

proach to pre-generate a forest structure enabling feature harvesting for online train-

ing using point features extracted as a camera orbits an object.

Ozuysal et al. then realised that the power of simply using random tests to train

a forest originates not from the tree structure itself but from the combination of

groups of binary tests. This led to the development of a new method referred to

as ferns [122] which unlike trees has no hierarchy and uses a semi-naive Bayesian

approach to combine feature responses. This in turn allows handling of many more

classes at higher classification rates than trees. The approach was also demonstrated

to improve the tracking robustness in a SLAM system [121]. Matching 300 keypoints

against 200 classes takes about 20ms on VGA images, while training takes 5mins.

A simpler and almost immediate training of ferns was successfully applied by

Glocker et al. [61] to re-localise a camera in the event of tracking failure on a SLAM

system like KinectFusion. Here sufficiently distinct keyframes annotated with cam-

era poses are downscaled and binary encoded via simple responses to random tests.

In this way any query image can be quickly compared with a block-wise Hamming

distance to retrieve the most likely candidate keyframes and corresponding poses.

2.1.3 Part-based approaches

To improve recognition performance in challenging situations like varying illumi-

nation conditions and with object deformations, global approaches moved towards

part-based models which can be seen as combining a local approach to initially iden-

tify parts with a global approach to group them and predict the location of entire

objects. Some parts detection methods rely on generative approaches, requiring to

model rather complex joint distributions to achieve good discrimination while oth-

ers rely on discriminative approaches to directly model the conditional probability

given some feature input.

In [84][85] Leibe et al. described an approach to establish a generative codebook

of interest points paired with offsets to the object centroid. To detect an object

instance in an image, interest points are detected and matched to the codebook,

followed by the accumulation of votes in a Hough space to find the centroid and

generate the best object location estimate from peaks. Interestingly, identifying the
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supporting parts of the peak (back-projection) allows segmentation of the object

from its background; the complete method therefore can be seen as an intertwined

bottom-up (recognition) and top-down (segmentation) approach.

Rather than matching interest points to codebook entries (which can be inefficient

when large collections are involved), Gall et al. [54][55] formulated a discriminative

approach using random forests [5][18] that directly maps parts to their correspond-

ing Hough vote (thus calling this method Hough Forests), in a manner similar to

Lepetit’s approach [91] previously described, enabling improved performance by

sidestepping the time-consuming codebook matching of Leibe et al. [84]. Training

is achieved by interleaving classification and regression information gain measures

to reduce class and offset uncertainty during tree growing, leading to leaves having

samples with similar labels (foreground or background) and similar locations (offsets

with respect to object centroid). At runtime, patches are extracted from the target

image and classified using the trained forest; the associated offsets of the patches

classified as foreground are used to cast votes for the object centroid, followed by

peak finding to localise one or more instances.

Extensions of the Hough Forests method were made to achieve robustness and real-

time performance for head pose estimation and facial features detection by Fanelli

et al. [45][46][44]. Other follow-up work included allowing multiple-class output in a

single unified model by Razavi et al. [128] that scales sub-linearly with the number

of classes (enabled by having a shared codebook of parts) while retaining similar

detection accuracy compared to the linear scalability of applying class-specific Hough

Forests in sequence.

Another discriminative approach is that of Felzenszwalb et al. [48] where object

class recognition is achieved via a multiscale deformable parts model where each

part captures local appearance and they are interconnected with springs (a repre-

sentation known as Pictorial Structures [49]). This method can handle a much richer

variability in class appearance (compared to global approaches like HoG) by using a

mixture of models. For example one model can be trained to represent frontal views

of an object while another to represent side views.

Other remarkable part-based approaches include Shotton et al.’s work for human

pose recognition in real-time [141]. In this method, skeleton joint proposals are

generated by first classifying individual pixels in a Kinect depth map and labelling
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them with different body parts using the random forest framework, requiring only

simple depth comparison features that can be evaluated very quickly (and in parallel

using the GPU as described in [140]). Once pixels are labelled, 3D joint positions

for each part are determined by polling individual pixel contributions with mode-

finding using mean shift [29]. As in Lepetit’s method [90], impressive performance

is achieved by using synthetic data for training.

Rather than classifying body parts, Taylor et al. [153] demonstrated how to di-

rectly infer the dense model coordinates of a canonical human pose by using a

random forest with a regression metric; correspondences are then used to obtain

the pose by minimizing an energy function directly, avoiding the alternation be-

tween correspondence finding and pose optimisation as done for instance in ICP

[14][25]. Similar dense correspondence achieved by a regression forest was success-

fully applied by Shotton et al. [142] to quickly re-localise a camera given a previously

reconstructed 3D map of a scene.

Recently, Aubry et al. [7] presented a part-based method to detect objects in

photographs from a large repository of 3D models (such as Google or Trimble 3D

Warehouse). The method consists in matching individual image patches to an 800K

collection of mid-level visual elements represented with HoG descriptors [35]. These

visual elements are created offline from rendered 3D views of the models having

their score responses globally calibrated. Individual detections are enforced to follow

spatial layout and viewpoint constraints following the star model of Felzenszwalb

et al. [48].

2.1.4 Information Retrieval Approaches

When the number of objects to recognise is substantially large (more than 1K), and

particularly when we are interested in discriminating between individual instances

within a class (e.g. tell the difference between a Toyota Prius and a Tesla Model-S

rather than recognising them as cars) information retrieval approaches provide the

scalability required.

Prominent work in this field includes that of Schmid and Mohr [138] where point

features engineered to be invariant to viewpoint changes, illumination, scale, and

partial occlusion form the basis of a voting-based image retrieval system.
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Newer methods adopted a technique commonly known as the Bags of Visual

Words (BoW) model, which is a visual analogue of text retrieval and consists of

indexing and retrieval phases. Indexing begins by extracting salient keypoints in

an exemplar image, computing a descriptor of the regions around them (such as

histogram of edges if using SIFT [97] or responses to box filters if using SURF

[11]), followed by vector quantisation of their responses (by K-means clustering for

instance) and assigning each cluster to a word of a predefined dictionary (codebook

generation). Finally a bit-vector (the document) is created to represent the presence

or absence of words. At retrieval time, the same keypoint detection, description, and

codebook generation is applied to target images followed by a matching process to

obtain a distance metric, resulting in likely candidates that maximise the number

of matches.

Sivic and Zisserman utilised the BoW model on their Video Google system [147],

bringing ideas from large-scale text retrieval systems into the computer vision com-

munity. They described a system capable of identifying a query object in many

video frames, taking advantage of the temporal continuity of the data stream to

reject false positives.

Nister and Stewenius [116] improved the recognition quality and scalability of

the BoW model by creating a vocabulary tree. The branch-and-bound algorithm

of Lampert et al. [83] described earlier was also used in order to efficiently localise

objects within an image following the BoW model.

Cummins et al. [32] also leveraged the BoW model for place recognition to detect

loop closures on a large-scale SLAM system.

The BoW model was also used to quickly obtain the pose of a camera in a given

scene assuming a previously created 3D map of the environment (created for instance

with SfM). This works by matching corresponding points in 2D images and 3D

maps followed by the n-point-pose algorithm and filtering outliers with RANSAC.

As matching is a time consuming process, Sattler et al. [136] observed that it would

be necessary to have knowledge of the likely search cost that each feature would

incur before matching them. After feature descriptors are assigned to words (using

a vocabulary of about 100K words), the number of members represented by each

cluster is a good indication of the search cost as a feature would only have to be

linearly searched amongst other members of the same word. Therefore accelerated
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feature matching is achieved by sorting words in order of increasing expected cost

for fast prioritised search. To reduce the impact of quantisation errors, Sattler

et al. [137] also explored the co-occurrence of matches to perform a backwards 3D-

to-2D search to enable features surrounding correctly matches on the 3D model to

look back for those in the image via a smaller vocabulary on which the initial 2D

features were assigned during the first pass.

A recent approach to accelerate feature matching was developed by Hartmann

et al. [68]. They predict the matchability likelihood of features using a random

forest trained on image sequences using as positive samples the features that can be

matched at least once. This allows to discard about 70% of features while retaining

about 60% of the matches.

2.2 Approaches for 3D Scene Labelling

Semantically labelling images into objects classes (e.g. floor, wall, window, road,

etc.) is a very challenging problem in computer vision. The task is not only difficult

to achieve given the variety of changing conditions that objects undergo such as

pose, illumination or non-rigid deformations but also the fact many ambiguities are

difficult to resolve when considering local information alone. As an example, a leg

can be part of a variety of animals, but only when the context is taken into account,

such as animals with feathers, ambiguities can be resolved.

Early approaches tackle segmentation as an independent data-driven process with-

out recourse to recognition. The benefits of their joint formulation began to be ap-

preciated with the need to extract consistent segmentations and semantic labelling

of regions. The seminal work of Tu et al. [159] combines the two approaches for the

first time, demonstrating the ability to parse an image into generic regions (back-

ground) and meaningful objects (text and faces) by creating generative models of

regions and objects activated by bottom-up image proposals. Similarly Winn and

Jojic [163] described a method for unsupervised learning of a single object class via

a hierarchical generative model that is directly usable for segmentation, combining

bottom-up color and edge features with a top-down shape and pose model. Another

early approach is that of Leibe and Schiele [85] who used parts-based recognition

and Hough voting to recognise an object class and segment it with back-propagation
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of winning votes.

To achieve higher quality pixel-level segmentations newer approaches rely on Con-

ditional Random Fields (CRF) [82], a discriminative graphical model initially formu-

lated for labelling 1D text sequences. It proceeds by minimising an energy function

consisting of unary and pairwise terms such that per-pixel labelling is both indi-

vidually accurate and locally consistent between neighbours. Compared to related

approaches like Markov Random Fields (MRF) [58], CRF avoids the construction

of a complex generative model, making it much easier to train while incorporating

long-range dependencies.

He et al. call this problem image labelling [69]. Their work uses features at the

local and global scales to take advantage of context and puts them into a CRF

formulation generalised for 2D labelling.

The prominent work of Shotton et al. called TextonBoost [144] resolves recognition

ambiguities by modelling shape, appearance and context information using textons

as features for a discriminative boosted classifier that, when combined with edge

information, can obtain spatially coherent segmentations for more than 20 object

classes. This can be seen as a unification of recognition and segmentation in a similar

spirit as the previously described approach of Leibe and Schiele [85] but applied for

many more classes. An improved method known as Semantic Texton Forest [143]

achieves even higher recognition performance and real-time speeds using a random

forest.

Brostow et al. [20] follow the previously described texton forest framework in order

to segment outdoor scenes captured from a moving vehicle. However, rather than

using appearance features directly, they incorporate 3D structure and motion cues

(such as the feature’s height and closest distance to the camera path) and project

them to the 2D image plane. These projected features can then produce accurate

segmentations after dense pixel classifications using the texton forest.

Silberman and Fergus [145] contributed a dataset (NYU dataset) of scenes mea-

sured with a RGBD camera labelling the depth and colour frames with 13 classes

such as bed, window, ceiling, floor, etc. This serves as an input to a CRF framework

with unary potentials consisting of intensity and depth descriptors (such as SIFT

[98] and Spin images [76]) in addition to location priors. 2D location priors provide

the contextual information of likely places of objects after being projected onto the
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image plane (e.g. beds are usually on the lower part of images while ceilings are on

the top) while 3D location priors offer likely depths of objects (e.g. walls are sensed

further than furniture). Their follow-up work [146] was able to infer support rela-

tions between interacting objects leading to enhanced segmentation performance.

Floros and Leibe [53] generate semantic segmentation of street scenes via a CRF,

taking advantage of the underlying 3D structure to generate valid 2D segmentations

from projections in addition to temporal consistency between frames.

The recent approach by Farabet et al. [47] uses a multiscale convolutional network

trained with features learned directly from images (rather than being hand-crafted),

allowing it to capture shape, appearance and context (with the multiscale property

allowing to exploit long-range information). Couprie et al. [30] improved the pre-

vious approach with the addition of depth information, making it also amenable to

real-time prediction with FPGAs.

2.3 Random Forests

We have previously described a few methods such as [54][90][141] that rely on random

forests for discriminative class or regression prediction that are shown to outperform

matching-based object recognition approaches. In this section we provide a more

detailed look at the theory behind random forests as it will serve as a foundation for

our real-time recognition work described in Section 5.2.4. A more extensive review

of this technique and its application to computer vision problems can be found in

the recent book by Criminisi and Shotton [31], from which we also the borrow some

of the notation that follows.

Random forests can be used in tasks such as classification, regression, density

estimation, semi-supervised learning, amongst others. A random forest consists of

a set of T trees such that a battery of tests are applied independently on each of

them and results are later combined across the set. Each tree also contains internal

nodes (splits) and terminal nodes (leaves) arranged in a hierarchy. Starting from

the root split node at the top, each node branches into two child nodes across D

levels until leaf nodes L are reached (see Figure 2.1). Each split node applies a test

on incoming data and steers it to the right or left child according to the test result.

Once the test data lands at a leaf node, the stored statistics are retrieved providing
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Figure 2.1: Random forest structure. A set of T trees consisting of split nodes
(orange) and leaf nodes (green) steers the incoming data v left or right according
to the binary test results from the split nodes. The paths taken through each tree
are highlighted and the final leaf node reached contains an empirical distribution of
classes obtained from trained data. The trees shown contain up to D = 3 levels.

a class or regression prediction. The split node tests as well as leaf node statistics

are established during a training phase from a dataset.

As an example, for the task of classification, suppose that we have a dataset

containing a set of training points v alongside their class labels c ∈ C, with C =

{ck}
|C|
k=1. Each point is a vector of feature responses v = (x1, ..., xd) ∈ Rd. The

classification forest’s goal is to estimate the class probability p(c|v) for a given test

point. Each split node is a weak learner trained by optimising the parameter vector:

θj = argmax
θ∈Tj

G(Sj ,θ) , (2.1)

where Tj is the space of all possible split parameters for node j and Sj is the set of

training points arriving at the node. Usually the information gain metric is used as

the objective function G (see Equation 2.2). This metric tries to divide the incoming

data points Sj into left SL
j and right SR

j subsets, such that their class label impurity

(or entropy) Hc(S
i
j) is reduced. Therefore leaf nodes have much less class uncertainty
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compared to nodes further up the tree.

G(Sj ,θ) = Hc(Sj)−
∑

i∈{L,R}

|Sij |
|Sj |

Hc(S
i
j) , (2.2)

Hc(S) = −
∑
c∈C

p(c) log p(c) . (2.3)

The class histograms of data points arriving at leaf nodes are used as an empir-

ical posterior pt(c|v). The final class posterior is usually computed as the average

prediction amongst the set of trees:

p(c|v) =
1

T

T∑
t=1

pt(c|v) . (2.4)

The use of trees for classification and regression tasks can be traced back to the

initial work described by Breiman et al. [19], but was limited at that time to lower

dimensional data. Later Amit and Geman [5] introduced the concept of using en-

sembles of trees with random node tests to improve accuracy and generalisation.

Breiman further developed the method using bagging to randomly sample the train-

ing data and called the new technique random forests [18] as it is now known.

Random forests provide several desirable qualities that we are interested to have in

a recognition module. These include the ability to handle multiple classes, generali-

sation to new data, suitability for parallel GPU architectures for real-time prediction

[140] and a probabilistic output allowing control of which predictions to keep.

Application of the standard random forest method however is not sufficient for

our task of object recognition. While a classification forest would allow us to predict

the type of object at each individual pixel (see for example the dense classification

results of Shotton et al. [141]) we are also interested in estimating the accurate

6 DoF object pose.

2.3.1 Hough Forests

Gall and Lempitsky [54] introduced a new method called Hough Forests, allowing

them to combine both a classification and regression metric followed by a Hough-

style voting mechanism [8] to jointly predict class and object locations in 2D images.

The Hough Forest method is both fast and robust and was successfully applied for
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Figure 2.2: Hough Forest patches for 2D object localisation. Foreground patches
(green) are extracted from inside the bounding box of the target object (blue), each
having an offset vector pointing to the centroid of the box (orange). Background
patches (red) are extracted from outside the bounding box.

tasks such as pedestrian detection and head pose estimation [45][46]. We adapt this

method to detect object instances in depth images while estimating their 6 DoF

pose.

In the original formulation of Gall et al. the training points consisted of a set of

patches {Pi = (Ii, ci, δi)} of 16×16 pixels each extracted from training images, with

Ii the appearance of the patch in different channels (raw intensities, derivative filter

responses, etc.), ci class labels and δi 2D offsets (see Figure 2.2). The method con-

sidered two class labels: foreground (ci = 1) and background (ci = 0). Foreground

patches are those extracted from inside a bounding box of the target object while

background patches lie outside the box. The 2D offset vector δi is obtained by con-

necting the center of the patch to the centroid of the bounding box; in practice this

value is only required for foreground patches and therefore a background patch’s

offset remains undefined. After training, the leaves will contain a class distribution

of patches, and for those containing foreground labels the associated offsets vectors

are stored and used at test time to cast votes for the object center in a Hough space.

The feature vector vi = [h1, h2, ..., hk]
> for a patch Pi consists of all the binary

responses parametrised by θ = (a,u1,u2, τ), where a is an appearance channel, u1
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and u2 two probe positions, τ is a threshold value, and the binary test is defined as:

h(θ, I) =

0 if Ia(u1) < Ia(u2) + τ

1 otherwise .
(2.5)

Differently from standard classification or regression forests, a Hough forest tries to

jointly decrease both the class label and offset vector uncertainty towards the leaves

by interleaving the information gain measure (see Equation 2.2) with a regression

metric defined as:

Hr(S) =
∑
i:ci=1

(δi − δS)2 . (2.6)

Therefore, likely patches with high foreground class probability are able to cast

votes with low uncertainty for the centroid of the object.

2.4 Summary

In this chapter we reviewed the available methods found in the literature that will

lead us to design novel real-time object recognition and scene labelling algorithms

which will become important components in our semantic SLAM pipeline.

We found that most techniques have very little interest in real-time execution

speeds and are mostly dedicated to dealing with single colour images. Only recent

methods address execution speed as an algorithmic design consideration and fully

embrace modern computer architecture for speed-ups.

Recent trends prompt for the re-evaluation of classical approaches for object recog-

nition and SLAM, such as commodity parallel processing and depth sensing video

devices. Therefore in the next chapter, in addition to introducing some useful math-

ematical definitions, we will review the latest computing architecture landscape that

was available during this research.
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Chapter 3

Preliminaries

In this chapter we begin by establishing the notation used to describe equations

consistently throughout the thesis and review some mathematical concepts that are

frequently used in our area of research, such as rigid body transformations, Lie

groups and their algebra and non-linear least squares optimisation.

In addition, we will describe a modern GPU architecture offering commodity

parallel processing. This key processing technology enabled the development of

dense SLAM systems like ours that can operate in real-time.

It would be challenging to code algorithms without a programming model that is

both expressive and of high-performance. Therefore at the end of this chapter we

will also review modern programming models that we used extensively to acceler-

ate algorithms for tasks such as bundle adjustment, object recognition and plane

detection.
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3.1 Notation

We represent an m dimensional vector in lower case boldface and columnar form:

v =


v1

v2

...

vm

 , (3.1)

or in row form v> = [v1, v2, ..., vm]. Matrices are denoted with upper case boldface

such as A.

Points in space are frequently represented using homogeneous coordinates rather

than Cartesian coordinates as they allows us to represent a variety of transfor-

mations (like perspective transformation, translation, etc.) via matrix-vector mul-

tiplication. To homogenize Cartesian coordinates we add an extra w term. For

example the homogeneous coordinates of a 3D point p = [x, y, z]> are represented

as ṗ = [x, y, z, w]>, whereas a 2D point r = [x, y]> is represented as ṙ = [x, y, w]>:

ẋ =

[
x

w

]
. (3.2)

To convert back to Cartesian coordinates we divide by the added w term (this is

called homogeneous projection and is denoted by π). For example ṗ = [x, y, z, w]>

becomes p = [x/w, y/w, z/w]>. Setting w = 1 expresses the original Cartesian point

and setting w = 0 expresses points at infinity (direction vectors):

π(ẋ) =


x/w

y/w

z/w

 . (3.3)

3.2 Rigid Body Transformations

We represent rotation in 3D with a 3 × 3 matrix R and translation with a 3 × 1

vector t. A point in space p can be rigidly transformed (rotated and translated)

to a different place with respect to its reference frame or transformed to another
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reference frame via a matrix-vector multiplication:

pa = Rabpb + tab =


r00 r01 r02

r10 r11 r12

r20 r21 r22

pb +


t0

t1

t2

 , (3.4)

where the subscripts on the points indicate the coordinate frames where their values

are represented (e.g. pb is a point in coordinate frame b) and the subscripts on

the transformation indicate the source and target coordinate frames, which must

be read from right to left (e.g. Rab is a rotation bringing a point from coordinate

frame b into coordinate frame a).

The expression above can be made more compact by using homogeneous coordi-

nates for the point and storing the rotation and translation components in a single

4× 4 matrix:

ṗa = Tabṗb =


r00 r01 r02 t0

r10 r11 r12 t1

r20 r21 r22 t2

0 0 0 1

 ṗb =

[
Rab tab

0> 1

]
ṗb . (3.5)

3.3 Lie Groups and Lie Algebra

Some of the problems that we solve require an optimisation framework allowing us

to find model parameters that best explain a measured phenomena, for example to

obtain the transformation parameters describing the motion of a camera in space by

comparing a predicted view of a 3D map and a measured view of the scene from a

camera. Such problems require solving non-linear systems iteratively, where trans-

formations are updated in a number of small steps. The transformation matrices

that we saw in the previous section however are complicated to use iteratively as

only a small subset of the possible matrices are valid transformations, requiring ex-

tra verification steps to preserve, for instance, orthonormal columns in the case of

rotation matrices.

The above mentioned complications arise from the over-parametrisation of trans-

formation matrices, where 9 values are used to describe rotation or 12 for a the rigid

body transformation matrix. In reality rotations only have 3 degrees of freedom

(DoF), and therefore it is enough to express them with 3 parameters. Likewise a
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full rigid body transformation has 6 degrees of freedom. We note that there are

several widely used minimal parametrisations of 3D transformations (e.g. Euler

angles). However here we will show that understanding these transformations as

members of a Lie Group leads to a straightforward way to use minimal parametri-

sations for optimisation. The following is an overview of the fundamental concepts.

More detailed descriptions can be found on textbooks such as [56] and [160].

A Lie Group is a smooth differentiable manifold with derivatives of all orders. As

such, moving between their immediate neighbours can be achieved with a minimal

parametrisation.

As a group, they must satisfy the following properties when performing an oper-

ation ⊗ between members:

Closure: if A,B ∈ G then A⊗B ∈ G.

Associativity: if A,B,C ∈ G then (A⊗B)⊗C = A⊗ (B⊗C).

Identity: an element 1G ∈ G satisfies 1G ⊗A = A⊗ 1G = A where A ∈ G.

Inverse: there is an element B ∈ G such that A⊗B = B⊗A = 1G where A ∈ G.

A 3 DoF rotation is member of the special orthogonal group SO(3) while a 6 DoF

rigid body transformation is a member of the special Euclidean group SE(3).

3.3.1 Rotation Group: SO(3)

Considering the Euler-angle representation of a rotation matrix as an example, with

φ, θ, ψ the rotation angles about the x, y, z axis respectively, we know that:

R =


cos θ cosψ − cosφ sinψ + sinφ sin θ cosψ sinφ sinψ + cosφ sin θ cosψ

cos θ sinψ cos θ cosψ + sinφ sin θ sinψ − sinφ cosψ + cosφ sin θ sinψ

− sin θ sinφ cos θ cosφ cos θ

 .

The above can be further simplified using small-angle approximations (i.e. sin(α) ≈
α, cos(α) ≈ 1):

R ≈


1 −ψ + φθ φψ + θ

ψ 1 + φθψ −φ+ θψ

−θ φ 1

 ,
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3.3. Lie Groups and Lie Algebra

and removing second order terms leads to:

R ≈


1 −ψ θ

ψ 1 −φ
−θ φ 1

 = I + φ


0 0 0

0 0 −1

0 1 0

+ θ


0 0 1

0 0 0

−1 0 0

+ ψ


0 −1 0

1 0 0

0 0 0

 ,

or:

R ≈ I + φG1 + θG2 + ψG3 . (3.6)

As we can see, any rotation matrix near the identity differs from it by a linear

combination of the Generator matrices G1,G2,G3 with coefficients given by ω =

[φ, θ, ψ]> ∈ so(3). so(3) is called the Lie algebra of the SO(3) group and spans the

tangent space near the group’s identity, with the generators being the basis for this

space with:

∂R

∂ωi

∣∣∣∣
ω=0

= Gi . (3.7)

To generalise this to other elements of the group we consider a point p rotat-

ing about an axis ω = [ω1, ω2, ω3]> with unit angular velocity (‖ω‖ = 1) and an

instantaneous velocity given by:

∂p

∂t
= ω × p . (3.8)

We can express the above cross product as a matrix-vector multiplication by

representing the vector ω via the skew-symmetric matrix [ω]×:

[ω]× =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 = ω1G1 + ω1G2 + ω3G3 =

3∑
i=1

ωiGi , (3.9)

leading to the following differential equation:

∂p

∂t
= [ω]×p , (3.10)

with solution:

⇒ p = e[ω]×tpt=0 . (3.11)

In θ units of time the point experiences a rotation of:

R(ω, θ) = e[ω]×θ . (3.12)
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If we let the axis of rotation have a norm of ‖ω‖ = θ we can express rotation about

the origin as a vector ω whose direction is the axis of rotation and whose length is

the angle. Therefore the above simplifies to:

R(ω) = e[ω]× . (3.13)

The previous exponential map can be expressed with a Taylor series as:

exp([ω]×) = e[ω]× = I + [ω]× +
1

2!
[ω]2× +

1

3!
[ω]3× + ...∞ , (3.14)

yielding the Rodriguez formula [56] given by:

e[ω]× = I + [ω]×
sin(θ)

θ
+ [ω]2×

1− cos(θ)

θ2
. (3.15)

The exponential map therefore takes a skew symmetric matrix of the reduced 3

parameters needed for rotation of ω ∈ so(3) and turns it into a matrix ∈ R3×3 ⊂
SO(3):

R(ω) = exp

(
3∑
i=1

ωiGi

)
: so(3)→ SO(3) . (3.16)

Going back from SO(3) to so(3) is achieved with the logarithm:

ln(R) =
α

2 sin(α)
(R−R>) , (3.17)

α = arccos

(
tr(R)− 1

2

)
, (3.18)

ω = bln(R)c , (3.19)

where tr(R) gives the trace of R and the operator b•c returns the unique off-diagonal

elements of a matrix.

3.3.2 Rotation and Translation Group: SE(3)

The general rigid body transformation consisting of a translation vector t ∈ R3 and

rotation about the origin ω ∈ so(3) can be minimally parametrised by:

δ = [u,ω]> ∈ se(3) . (3.20)
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The exponential map to go from se(3) to SE(3) is given by:

T(δ) = exp

(
6∑
i=1

δiGi

)
: se(3)→ SE(3) , (3.21)

with generator matrices to express differential translations and rotations given by:

∂T

∂δi

∣∣∣∣
δ=0

= Gi , (3.22)

G1 =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 ,G2 =


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 ,G3 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 , (3.23)

G4 =


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 ,G5 =


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 ,G6 =


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 . (3.24)

The linear combination of generators can be expressed compactly in block-matrix

form as:

6∑
i=1

δiGi =

[
[ω]× u

0> 0

]
. (3.25)

The exponential map can then be expanded with a Taylor series as:

exp

(
[ω]× u

0> 0

)
= I +

(
[ω]× u

0> 0

)
+

1

2!

(
[ω]2× [ω]×u

0> 0

)
+ ...∞ , (3.26)

⇒ exp

(
[ω]× u

0> 0

)
=

(
exp([ω]×) Vu

0> 0

)
, (3.27)

with:

V = I +

(
1− cos(θ)

θ2

)
[ω]× +

(
θ − sin(θ)

θ3

)
[ω]2× , (3.28)

θ = ‖ω‖ . (3.29)

Going back from SE(3) to se(3) is achieved with the logarithm:

ω = bln(R)c , (3.30)

u = V−1t , (3.31)
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image plane

principal point

optical axis

pw

ph

focal length

optic centre
X

Y

Z

U

V

x

u

Figure 3.1: The pinhole camera model defines the relationship between points x in
3D space and their projections u into the image plane.

with

V−1 = I− 1

2
[ω]× +

1

θ2

(
1− θ sin(θ)

2(1− cos(θ))

)
[ω]2× . (3.32)

3.4 Pinhole Camera Model

We follow the pinhole camera model [67] as depicted in Figure 3.1. The image

plane has origin at the top-left corner and a central point called the principal point

p = [u0, v0]> defined as the intersection between the image plane and the optical

axis. The pixels are assumed to be rectangular with size pw×ph. The focal length f

in the pinhole camera model is the distance between the image plane and the optic

centre; the shorter the focal length, the wider the angle of view and consequently

the coverage of the scene captured. Together the principal point, focal length and

pixel size define the camera intrinsic parameters.1

A 3D point x = [x, y, z]> in the scene is projected as a 2D point u = [u, v]> on

1We ignore distortions coefficients for the purpose of this research as we mainly used the Kinect
depth and colour sensors, which are already of good quality.
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the image plane as function of its depth and the camera intrinsic parameters:

u = fu

(x
z

)
+ u0 , v = fv

(y
z

)
+ v0 , (3.33)

fu =
f

pw
, fv =

f

ph
. (3.34)

It is convenient to write the camera intrinsic parameters in matrix form as:

K =


fu 0 u0

0 fv v0

0 0 1

 . (3.35)

This allows us to transform a point x into homogeneous image space coordinates

u̇ via a matrix-vector multiplication:

u̇ = Kx , (3.36)

u̇ =


fux+ u0z

fvy + v0z

z

 . (3.37)

The inverse calibration matrix K−1 is given by:

K−1 =


1
fu

0 −u0
fu

0 1
fv
− v0
fv

0 0 1

 . (3.38)

This will be useful when determining direction vectors l from homogeneous pixel

coordinates u̇ = [u, v, 1]>:

l = K−1u̇ . (3.39)

3.5 Non-linear least squares optimisation

A number of SLAM problems that will be described in the following chapters require

an optimisation framework to find optimal model parameters from measured data

corrupted by noise. One such model to optimise is for instance the transformation

that best aligns a consistent 3D map to a noisy depth image acquired with an RGB-D
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camera; this process is called iterative closest point (ICP) and will be used for things

such as live camera pose estimation and object alignment; it will be described in

detail in Section 3.5.1. Another model to optimise consists of finding the set of

camera poses and 3D point positions that best explain 2D measurements in a set

of images; this process is called bundle adjustment (BA) and will be described in

detail in Chapter 4.

Models like these have cost functions which are non-linear in the parameters and

solving them require linear approximations to obtain partial solutions iteratively.

More formally, we aim to find the optimal parameters â ∈ Rp of the model f(a)

that best explain a set of N observations:

â = argmin
a

N∑
i=1

Ei(a)2 . (3.40)

We define the error function E(a) ∈ R as:

E(a) =
N∑
i=1

Ei(a)2 . (3.41)

There are a variety of methods available to solve 3.40 [117][125]. The most

straightforward is called gradient descent that proceed by stepping towards the local

minimum of E along the direction of the negative gradient −∇E until the function

stops decreasing. Gradient descent exhibits a “zig-zag” path leading to slow con-

vergence rate particularly close to the minimum (see Figure 3.2 left). The Newton

method can be more efficient provided the function is twice differentiable (see Figure

3.2 right) but requires calculating the Hessian of E(a) which can be intractable for

high-dimensional problems. The Gauss-Newton method, described in detail in the

rest of this Section, uses an approximation to the Hessian and thus can be efficiently

used for the type of problems we are interested in SLAM. The Newton-type methods

work well close to the local minimum, but since they cannot distinguish between

minima, maxima or saddle points they can fail to converge. The method known as

Levenberg-Marquardt (LM) [92][101] alternates between Gauss-Newton and gradi-

ent descent to achieve fast and guaranteed convergence. The LM method will be

explored in detail in Chapter 4 for solving the bundle adjustment problem.

The Gauss-Newton method starts by approximating the error function via a first
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Figure 3.2: (left) The gradient descent method for the quadratic form
1

2
x>Ax −

b>x + c shows slow convergence rate due to the “zig-zag” path towards the local
minimum. (right) The Newton method to find the minimum of a higher-order
polynomial (blue curve) approximates the function with a one-dimensional quadratic
form (red and green curves) on each iteration step xi. Image courtesy of Hauke
Strasdat.

order Taylor expansion around a:

E(a + x) ≈ E(a) +∇>Ex +
1

2
x>HEx , (3.42)

where ∇E is the gradient of E(a):

∇E =
∂E(a)

∂a
=

[
∂E(a)

∂a1
, ...,

∂E(a)

∂ap

]>
, (3.43)

and HE is the Hessian of E(a):

HE =
∂2E(a)

∂ai∂aj
=


∂2E(a)
∂a21

· · · ∂2E(a)
∂a1∂ap

...
. . .

...
∂2E(a)
∂a1∂ap

· · · ∂2E(a)
∂a2p

 . (3.44)

Expressing the residuals as an error vector: e(a) = {Ei(a)}Ni=1, the error function

becomes:

E(a) = e>e , (3.45)

and therefore:

∇E = 2J>e , (3.46)
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where J is the N × p Jacobian matrix of the error vector:

J =
∂e

∂a
=


∂E1(a)
∂a1

· · · ∂E1(a)
∂ap

...
. . .

...
∂EN (a)
∂a1

· · · ∂EN (a)
∂ap

 . (3.47)

Likewise the Hessian becomes:

HE = 2J>J + 2
∂J>

∂a
e . (3.48)

The second term in the Hessian is multiplied by residuals that are generally small

and distributed with 0 mean and can be ignored, leading to the Gauss-Newton

approximation to the Hessian given by:

HE ≈ 2J>J . (3.49)

At each iteration step we will determine a small update x to the model parameters

a that minimises the error function. This should happen when:

∇E(a+x) = 0 . (3.50)

Differentiating 3.42 and ignoring higher order terms we obtain:

∇E(a+x) = ∇E + HEx = 0 . (3.51)

Replacing 3.46 and 3.49 in 3.51 we obtain:

∇E(a+x) = 2J>e + 2J>Jx = 0 . (3.52)

Reordering the above leads to the so called normal equation:

J>Jx = −J>e . (3.53)

Finally the parameter update at each iteration k is given by:

x = −(J>J)−1J>e , (3.54)

ak+1 = ak ⊕ x . (3.55)

The sequence of iterations is stopped if the error norm stops decreasing from one

iteration to the next or a maximum number of iterations is reached.
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Figure 3.3: A scene with a nearby object before ICP alignment. The colour scene
represents the data surface, while the green object is the model.

3.5.1 Iterative Closest Point (ICP)

ICP [14] is a non-linear least squares optimisation process for registering two sets

of points representing overlapping 3D surfaces (referred to as the model and data

surfaces), thus placing both sets of data into a common reference frame.

It is assumed that exact correspondences are not known beforehand and therefore

the procedure will make an initial ‘guess’ on each iteration trying to find likely corre-

spondences that will be refined as the method converges to the solution. The initial

guess can be based on finding the closest model point to a particular data point.

However when the data to be aligned contains noise and outliers the closest-point

approach can generate a large number of mismatches, slowing the convergence rate.

A more robust metric of correspondence that we will be using is the point-to-plane

distance as described by Rusinkiewicz and Levoy [133], which uses projections that

are less sensitive to noise.

The model and data surfaces to align each consist of a vertex and normal map

(Vm,Nm and Vd,Nd respectively). Figure 3.3 shows an example scene where the

model of a chair is close to its final position, perhaps after detection, and requires

further ICP iterations to complete alignment.

A vertex map V is computed from a depth map D by back-projecting depth

values along direction vectors r connecting pixels to the optic centre obtained with
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the inverse calibration matrix:2

r(u) = K−1u̇ , (3.56)

V(u) = r(u)D(u) . (3.57)

When the 3D surface is densely sampled on a regular grid (as in the Kinect

camera), an approximation of the normal map N can be computed with the cross

product of neighbouring vertices as follows:

N (u) = s [(V(u+ 1, v)− V(u, v))× (V(u, v + 1)− V(u, v))] , (3.58)

where s[x] = x/‖x‖2.

The model alignment transformation Tmd ∈ SE(3) will take points from the data

reference frame and transform them to the model reference frame.

We will refine the model parameters by estimating a sequence of n incremental

updates {T̃n
md}nk=1 parametrised with a vector x ∈ se(3) with T̃k=0

md set as the iden-

tity. Taking the solution vector x to an element in SE(3) via the exponential map,

we compose the computed incremental transform at iteration k+1 onto the previous

estimated transform T̃i
md:

T̃k+1
md ← exp(x)T̃k

md . (3.59)

The error function we will use for ICP with a point-to-plane distance is expressed

as:

E(a) =
∑
u∈Ω

E2
u(a) , (3.60)

Eu(a) = Nm(u′)>
(

exp(a)V̂d(u)− Vm(u′)
)
, (3.61)

where Ω is the surface domain. As we are mostly dealing with surfaces extracted

from depth images the domain corresponds to pixels in a uniform 2D grid.

Here Vm(u′) and Nm(u′) are the projectively data associated model vertex and

normal estimated by projecting the data vertex Vd(u) at pixel u from the live depth

map into the reference frame with camera intrinsic matrix K and standard pin-hole

projection function π:

u′ = π(KV̂d(u)) . (3.62)

2A depth map stores for each pixel a distance to a scene point along the optical axis
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A data vertex is transformed into the model frame using the current incremental

transform T̃k
md:

V̂d(u) = T̃k
mdVd(u) . (3.63)

We will first calculate the Jacobian for a single residual Eu:

Ju =
∂Eu(a)

∂a
=

∂

∂a

[
Nm(u′)>

(
exp(a)V̂d(u)− Vm(u′)

)]
, (3.64)

=
∂Nm(u′)>

(
exp(a)V̂d(u)− Vm(u′)

)
∂ exp(a)V̂d(u)

∂ exp(a)

∂a
V̂d(u) . (3.65)

After simplification, the previous Jacobian becomes:

Ju = Nm(u′)>
∂ exp(a)

∂a
V̂d(u) , (3.66)

= Nm(u′)>[G1, ...,G6]V̂d(u) , (3.67)

⇒ Ju =


nx

ny

nz


> 

1 0 0 0 vz −vy
0 1 0 −vz 0 vx

0 0 1 vy −vx 0

 . (3.68)

with

Nm(u′) = [nx, ny, nz]
> ,

V̂d(u) = [vx, vy, vz]
> .

The normal equation for this ICP formulation can be written as:

J>Jx = −J>e . (3.69)

with:

J>J =
∑
u∈Ω

J>uJu , (3.70)

J>e =
∑
u∈Ω

J>uEu . (3.71)

Solving for the parameter update at each iteration k we finally get:

x = −(J>J)−1J>e . (3.72)

We use the previous solution to update the alignment transformation using Equation

3.59 and repeat the iterative process as described in Section 3.5 until the convergence

criteria are met.
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u1

u2

x

y

Figure 3.4: Plotted 2D data showing its two eigenvectors u1 and u2. The data
could be compressed with minimal loss of information by projecting into u1 as it
maximises its underlying variance.

3.6 Principal Components Analysis

It can be useful and more efficient to represent a measured multidimensional dataset

X = {xi}, i = 1...p,xi ∈ Rn in a lower dimensional space k < n. For example, as

shown in Figure 3.4, the plotted 2D data can be more succinctly expressed in 1D if

we assume it was originally generated along the axis u1 going through the middle of

the points and then corrupted by some noise along the second axis u2 perpendicular

to it. The major axis u1 should be chosen such that variance is maximised when

data is projected onto it. Essentially this method allow us to compress the dataset

by considering only the most informative dimensions.

To do this we first need to normalise the data by subtracting its mean:

x̄ =
1

p

p∑
i=1

xi , (3.73)

x̂i = xi − x̄ . (3.74)

The projection of a point x̂i on a unit vector u is given by x̂>i u. In order to

maximise the variance of all such projected points from the dataset we will choose
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a vector u that maximises:

e =
1

p

p∑
i=1

(x̂>i u)2 , (3.75)

e =
1

p

p∑
i=1

u>x̂ix̂
>
i u = u>

(
1

p

p∑
i=1

x̂ix̂
>
i

)
u , (3.76)

e = u>Σ(x̂)u , (3.77)

subject to ‖u‖ = 1.

Σ(x̂) is the covariance matrix and represents the spread of the data between every

pair of dimensions:

Σ(x̂) =
1

p

p∑
i=1

x̂ix̂
>
i =

1

p


∑
x̂0x̂0

∑
x̂0x̂1 · · ·

∑
x̂0x̂n∑

x̂1x̂0
∑
x̂1x̂1 · · ·

∑
x̂1x̂n

...
...

. . .
...∑

x̂nx̂0
∑
x̂nx̂1 · · ·

∑
x̂nx̂n

 , (3.78)

where x̂d is the dth dimension of x̂.

Furthermore, the expression Σ(x̂)u can be thought of as a matrix-vector trans-

formation applied to u. Therefore, in order to maximise e we would like to choose

a unit vector u whose direction is not affected by such a transformation:

Σ(x̂)u = λu . (3.79)

Such vector u is the principal eigenvector of the covariance matrix and λ its

corresponding eigenvalue. For a given square matrix of size n, there exist n such

eigenvectors and eigenvalues, and usually these are computed numerically. The

eigenvectors are also orthogonal to each other.

To represent the dataset in a lower dimensional space k < n we would then choose

the first k eigenvectors sorted by decreasing eigenvalue; the chosen eigenvectors can

be seen a new basis u1, ...,uk for the data. After projecting the data into the new

basis it becomes:

ŷi =


u>1 x̂i

u>2 x̂i
...

u>k x̂i

 , (3.80)
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with ŷ ∈ Rk.

The final approximated data (i.e. compressed) after discarding the less informa-

tive dimensions is reconstructed by:

x̂′i =
[
u1 u2 · · · uk

]
ŷi , (3.81)

x′i = x̂′i + x̄ , (3.82)

with x′i ∈ Rn.

3.7 Modern GPU architecture

Our research has mainly targeted the NVIDIA GPU architecture code-named ‘Fermi’

released in September 2009 [119]. Fermi is the successor of the ‘Tesla’ architecture

introduced in November 2006 that brought a unified graphics and compute model

[118] and it has now been superseded by the newest ‘Kepler’ architecture revealed

in May 2012 featuring more power efficiency [120], making it suitable for battery-

powered devices (with the NVIDIA Tegra K1 being an example GPU built on the

Kepler architecture).

We will see in Section 3.8.2 how the CUDA programming model enables access

to compute capabilities of GPUs via a high-level language similar to C++. In

the meantime it is worth mentioning that parallel threads are grouped into blocks

to enable cooperative execution via synchronisation primitives and local memory.

Internally, finer groups of 32 threads called warps are executed at the same clock-

step. The routines written by a programmer to describe the parallel computations

are commonly referred to as kernels.

The Fermi architecture consists of a set of Streaming Multiprocessors (SM, typ-

ically 16) each containing 32 CUDA cores to perform parallel computations (see

Figures 3.5 and 3.6).

Fermi GPUs schedule activities at both the GPU and SM level. A GigaThread

global scheduler dynamically organises blocks of threads to be executed in parallel

amongst the SMs. In addition, each SM also contains dual Warp Schedulers and

Instruction Dispatch units to allow simultaneous execution of two warps on the

CUDA cores and other execution units. To maximise GPU utilisation, the Fermi
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Figure 3.5: The Fermi GPU architecture. A set of 16 Streaming Multiprocessors
(SM) execute parallel operations organised by the GigaThread global scheduler.
Each SM contains a local configurable L1 memory while fast GPU-wide caching is
achieved via a L2 cache. Adapted from [164].

architecture allows concurrent kernel execution where more than one kernel executes

simultaneously on the same GPU.

This architecture also offers a memory hierarchy consisting of L1/L2 caches and

DRAM memory and is connected to the host CPU via a PCI-Express bus. Inside

the SM there is a local memory of 64 KB whose capacity can be configured to act

mostly as L1 cache or shared memory (48 KB of L1 cache and 16KB of shared

memory, or 48 KB of shared memory and 16KB of L1 cache). When more L1

cache is desired it improves performance during random memory accesses and also

reduces the chance of spilling registers to DRAM to reduce latency when the on-

chip register file is saturated. Conversely, when more shared memory is desired,

this could enable blocks of threads in a SM to cooperate by sharing intermediate

results or to programatically cache data from DRAM. Fast GPU-wide data caching

is allowed via the 768 KB L2 cache.

Each CUDA core contains both an integer arithmetic logic unit (ALU) and float-

ing point unit (FPU) (see Figure 3.6) with support for fused multiply-add (FMA)
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Figure 3.6: Streaming Multiprocessors (SM) architecture. Each SM holds 32 CUDA
cores with a configurable shared memory/L1 cache. A dual warp scheduler and
dispatch unit allows simultaneous execution of two warps. Special Function Units
(SFU) accelerate computation transcendental operations. Adapted from [164].

instructions for enhanced precision of intermediate results on common operations

such as D = A×B + C. The Load/Store Units calculate source or destination ad-

dresses and move data into the caches or DRAM. Transcendental instructions such

as sine, cosine and square root are executed by Special Function Units (SFU).

This new architecture also offers up to 4.2x double precision performance en-

hancement compared to the previous generation as well as faster context-switching

between graphics and compute tasks, a desirable property in Dense SLAM systems

as some algorithms are more naturally handled via OpenGL rendering techniques

(see for example Section 6.2.2).
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3.8 Parallel Programming Models

An expressive programming model should be able to describe an algorithmic intent

without resorting to low-level hardware constructs, and should also enable perfor-

mance portability by delaying target processor optimisations to the runtime sub-

system.

In the context of SLAM, it is beneficial to succinctly instruct a computing device

to execute the modules of a SLAM pipeline in order to manage its inherit complexity

and real-time requirements. As will be described in Section 5.2.3, we will use parallel

primitive operations supported by template libraries like Thrust [12] to compactly

accelerate an object recognition algorithm to achieve real-time speeds, and also to

perform fast dense data-association for planar regions in Section 6.3.2.

While it is in theory possible to produce a dense SLAM system written entirely

for the CPU with a language like C++, it would likely be of low performance and of

little practical use. Furthermore, the dense SLAM systems of interest to us produce

hole-free surface predictions that can only be rendered quickly enough by using

hardware accelerated rasterisation units present in GPUs, with many routines such

as frustum culling, depth-order testing and triangle filling available ‘for free’ thanks

to the progress in the field of computer graphics. To take advantage of years of

real-time graphics research it is worth reviewing the modern GPU pipeline and its

programming interface via OpenGL.

3.8.1 Modern GPU Pipeline and OpenGL

The current GPU architecture is the result of more than 20 years of development

of hardware accelerated 3D graphics and programming models, evolving from being

a fixed function triangle rasterisation unit [139], to allowing user-programmable

graphic stages [93], and finally becoming a general-purpose parallel processor [94].

Today we can describe it in abstract terms as a pipeline consisting of both fixed

and programmable stages in a chain (see Figure 3.7), each one performing operations

in parallel to every input data element.

More concretely, current GPUs hold two logical pipelines: The graphics pipeline

(see Figure 3.7) and the compute pipeline (see Figure 3.8). As their names imply, the
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Figure 3.7: The graphics pipeline consists of both fixed (orange) and programmable
stages (blue) operating on data elements in parallel, ending in the final rendered
image.

graphics pipeline deals with the processing of elements resulting in graphical output

while the compute pipeline process data elements in parallel for general purpose

tasks. This new logical partition was only recently apparent with the advent of

programming languages such as CUDA, OpenCL and Compute Shaders as early

attempts to exploit the massive parallelism of GPUs were made within the graphics

pipeline itself by tricking the system to perform non-graphical tasks via pixel shaders

and storing the input/output data elements in non-visible buffers.

In the graphics pipeline the raw graphics data is first assembled into primitive

elements such as points, lines and triangles and passed to the first programmable

stage called the vertex shader which transforms individual vertices, for example by

perturbing them to simulate water effects. The resulting data is passed into the

tessellation shader to programmatically increase the geometric detail (e.g. based on

viewing distance).

Following this is the geometry shader allowing the creation of new geometric

primitives (e.g. from point to triangle). For example, a single triangle primitive can

be partitioned into 3 independent lines, an oriented point can be transformed into

normal whiskers for visualisation or even amplified to a triangle strip to resemble

an hexagon for splat rendering with surfels (see Figure 6.3 in Chapter 6).

With the geometric data already processed it is time for the rasterisation process

to convert them into candidate pixels (commonly known as fragments) which are

input to the fragment shading stage where final color processing takes place at the

pixel scale.
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Figure 3.8: The compute pipeline consists of a single programmable stage operating
in parallel on every data element.

The compute pipeline can accept more general buffers than the graphics pipeline

and enables more control over the operations performed and work dispatch.

Fortunately during our research the programming models to harness the paral-

lelism of GPU’s for graphics and compute tasks were mature enough for desktop

class applications, and therefore we were able to easily write code in OpenGL and

CUDA whenever needed. Other languages such as OpenCL or C++AMP are equally

capable to expose the GPU processing power but their slower adoption and platform

availability limit the choices of supporting libraries.

3.8.2 CUDA

To harness the parallel compute power of GPU’s, earlier approaches masked general

computations inside graphics shading languages such as CGSL (a practice known

as GPGPU and popularised during 2001-2005). NVIDIA introduced the CUDA

platform in 2006 comprising a new hardware architecture and programming model

to enable higher-level access to compute capabilities with a syntax more commonly

used by non-graphics programmers (this is now known as GPU-Compute). Even

though CUDA can be seen as a complete hardware and software platform with many

language bindings, supporting libraries and tools, for the purpose of this section we

will focus on the description of the programming model enabled via the C/C++

language extension.

The CUDA programming model expresses parallel operations via self-contained

kernels written by a programmer to hold instructions that are executed in parallel by

threads. Each thread instantiates the same set of kernel instructions and additionally

contains a unique thread ID, private local memory, program counter, registers and

varying data inputs or outputs. Typically a kernel would read input data from the

DRAM global memory and output data would be written back to it once execution
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Listing 3.1: Example CUDA kernel to add two vectors A and B into C

1 // Each thread instantiating this kernel will operate

2 // on a different element according to its ID.

3 __global__ void cuVectorAddition(

4 // output

5 float* cArr ,

6 // input

7 const float* aArr ,

8 const float* bArr ,

9 const int elementCount)

10 {

11 // Compute the thread ID

12 int id = threadIdx.x + blockIdx.x*blockDim.x;

13
14 // Bounds check

15 if (id < elementCount)

16 cArr[id] = aArr[id] + bArr[id];

17 }

completes.

An example kernel to compute the addition of two vectors is presented in Listing

3.1. The listing contains the kernel body with a set of instructions to be executed

independently for each thread in parallel. It can also be seen as the body inside a

traditional for loop used in serial CPU code. To identify the data element the kernel

is operating on, CUDA provides built-in variables such as threadIdx, blockIdx and

blockDim.

Threads are organised in blocks and these in turn are organised in grids (see Figure

3.9). Thread blocks enable cooperative parallel routines via fast data sharing and

barrier synchronisation primitives. The grid is sent to the GPU and the blocks are

distributed amongst the SM and corresponding CUDA cores. The grid provides

GPU-wide synchronisation by sharing data via global memory between kernel calls.

The programmer or the compiler has control over the parameters to define the

thread organisation that is most suitable to the algorithm, but there are limitations

on the target hardware that must be taken into account, particularly when shared

memory is required as this is a limited resource on each SM. An example kernel

organisation is given in Listing 3.2. Here the configuration parameters are written

by the programmer prior to the kernel call inside ‘<<<, ,>>>’.
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Figure 3.9: CUDA threads organisation. left: A single thread holds private local
memory. Middle: Threads are organised in blocks to cooperate via shared mem-
ory. right: Thread blocks are further organised in grids and cooperate via global
memory. Adapted from [119].

3.8.3 Thrust

While the CUDA programming model reduced the overhead to implement parallel

GPU-Compute algorithms, finding the right thread organisation still posses a chal-

lenge to maximise the resource utilisation of GPUs. Furthermore, many common

routines such as sort, search and reductions consist of a generic sequence of steps

that only need to be specialised to suit a particular algorithm.

To simplify this, some libraries such as CUDA Data Parallel Primitives (CUDPP)

were initially developed by Harris et al. [65], followed by the introduction of template-

based libraries like Thrust by NVIDIA [13] or Bolt by AMD [1], which we used

extensively to achieve peak performance of procedures with reduced coding.

To motivate the need of a higher level of abstraction we present an example of a

parallel reduction operation consisting of summing up all the elements of a vector

as this is a task used at various places in the development of our Semantic SLAM

systems. For a vector of size n, a multi-threaded parallel reduction has an improved

work efficiency of O(log n) compared to the equivalent single thread version of O(n).

As described in Section 3.8.2, threads are organised into blocks that can hold

shared memory allowing thread cooperation via synchronisation primitives and this
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Listing 3.2: Example CUDA kernel organisation and execution

1 int main()

2 {

3 int elementCount = 32768;

4 float* aArr = NULL;

5 float* bArr = NULL;

6 float* cArr = NULL;

7
8 // [...] Setup input data and copy from host (CPU)

9 //to device (GPU) memory.

10
11 // Organise threads into blocks and grids

12 int blockSize = 1024; // threads in block

13 int gridSize = elementCount/blockSize; // blocks in grid

14
15 // Execute the kernel

16 cuVectorAddition <<<gridSize , blockSize >>>(

17 // output

18 cArr ,

19 // input

20 aArr ,

21 bArr ,

22 elementCount );

23
24 // [...] Copy output data from device (GPU)

25 //to host (CPU) memory.

26
27 return 0;

28 }

is beneficial for a parallel reduction algorithm. Listing A.2 shows the kernel code

required to perform this operation using CUDA alone. The idea is to operate on

smaller parts of the data to be reduced at the block-level (divide-and-conquer ap-

proach); for this each thread within a block is responsible for loading its data item

and placing it in a shared memory space, followed by the reduction operation on

a paired element to obtain a final result for the block. To avoid data hazards,

the previous operations must be followed by synchronisation to ensure that write

instructions are completed by all the threads within a block. Since thread coopera-

tion occurs at the level of blocks, in order to complete a GPU-wide synchronisation

an additional reduction operation has to be performed to finalise the block-level

partial results.

Prior to launching a reduction kernel, device arrays must be created and data
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Listing 3.3: Parallel Sum reduction with Thrust

1 #include <thrust/host_vector.h>

2 #include <thrust/device_vector.h>

3 #include <thrust/reduce.h>

4 #include <thrust/functional.h>

5
6 int main(void)

7 {

8 int elementCount = 32768;

9
10 // Create input array on host

11 thrust :: host_vector <float > h_inputArr(elementCount );

12 // [...] Fill input array with data

13
14 //Copy input data from host to device

15 thrust :: device_vector <float > d_inputArr = h_inputArr;

16
17 // Binary sum operation

18 thrust ::plus <float > sumOp;

19
20 // compute sum on the device

21 int sumResult = thrust :: reduce(

22 d_inputArr.begin(), d_inputArr.end(), 0.0f, sumOp );

23
24 return 0;

25 }

copied to them from the equivalent host-side arrays. As described previously, two

kernel launches are required to compute the partial block-level summation and a

second one for the global sum. This is shown in Listing A.1. Notice that the

amount of shared data to be allocated per block is defined as the third argument

inside the ‘<<<, ,>>>’ kernel launch parameters.

In contrast to the very verbose code of Listing A.2 and A.1 we can more compactly

describe the same reduction operation using Thrust. Not only does this reduce the

amount of code required, but also the configuration parameters are determined

automatically by the compiler with no additional runtime cost, as shown in Listing

3.3. Allocation, deallocation and memory management are also greatly simplified

with the use of STL-like semantics and iterators.
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3.9 Summary

Having reviewed some fundamental mathematical concepts, the target GPU archi-

tecture we based our work on and its programming model, we are now ready to

describe the work performed during this research and highlight our novel contribu-

tions.

In the next chapter we explore the challenges and advantages of a hybrid CPU/GPU

implementation of Bundle Adjustment, allowing faster map optimisation for large

number of points.
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Chapter 4

Hybrid GPU/CPU Bundle

Adjustment

Next we describe a hybrid implementation of Bundle Adjustment (BA), an algorithm

used for back-end map optimisation in some SLAM systems like PTAM [79] as well

as offline structure from motion systems like Building Rome in a Day [2]. Until

recently it was only seen as time-consuming serial optimisation procedure running as

a background process on the CPU, but which under closer examination encompasses

several sub-steps suitable for parallelisation on the GPU.

BA is required to control the influence of errors and obtain globally consistent

maps from measured data, as depicted in Figure 4.1. These errors can come from

a variety of sources such as the measurement procedure (e.g. sampling artifacts),

unmodeled influences (e.g. translucent materials), sensor shortcomings (e.g. motion

blur), numerical round-off, to mention a few.

The motivation behind this work came from the sheer number of data points

requiring optimisation on dense maps created by systems like KinectFusion [112]

and DTAM [113]. An optimal solution should jointly consider estimating camera

and map structure parameters satisfying all the measurement constraints simulta-

neously. In practice however, systems like KinectFusion interleave those steps: first

optimising the map with fixed camera parameters followed by camera optimisation

assuming a fixed map. In doing so, the formulation is simplified and the system is
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Figure 4.1: A synthetic scene consisting of 100K noisy points (gray) from a vertical
plane reconstructed densely and 30 noisy initial camera estimates (black) following
a linear trajectory from left to right trajectory. After running bundle adjustment
we obtain the optimized points (blue) and cameras (orange) with reduced reprojec-
tion errors. This scene was optimised in 4.98 seconds with our hybrid GPU/CPU
implementation. A CPU-only version takes about 40 seconds to converge.

able to achieve real-time speeds. In this work we instead investigate practical limits

for performing joint optimisation without sacrificing too much speed by taking ad-

vantage of the sparsity on the BA formulation and opportunities for parallelisation.

In Sections 4.1 and 4.2 we will introduce the standard BA algorithm on serial

processors. From 4.3 we will analyse the structure of the solution and look at

accelerating this with parallel computations.

4.1 Objective Function

Assuming we are given an initial point-based 3D reconstruction of a scene along with

poses describing the trajectory of a moving camera, the goal of Bundle Adjustment

is to jointly optimise a set of n points {bi}n−1
i=0 ,bi ∈ R3 and m camera parameters

{aj}m−1
j=0 ,aj ∈ SE(3) in order to minimize the re-projection error across a set of

keyframes (either a running window over the last k frames or across the whole video

sequence). A simplified example with 4 points and 2 cameras is shown in Figure 4.2.

In the following description, it is assumed that exact correspondences are given.

Due to the non-linear nature of the projective transformation, the parameters are
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optimised following a non-linear least squares formulation [96], expressed as:

[âj , b̂i] = argmin
aj ,bi

n−1∑
i=0

m−1∑
j=0

(xi,j −Q(aj ,bi))
2 , (4.1)

Q(aj ,bi) = π(KTajwbi) , (4.2)

where Q(aj ,bi) represents the projection of the reconstructed 3D point i on the

camera j and xi,j ∈ R2 is the corresponding 2D image measurement (obtained as

the result of running a corner detection algorithm such as FAST [130]).

The error function is therefore defined as:

E(aj ,bi) =

n−1∑
i=0

m−1∑
j=0

(xi,j −Q(aj ,bi))
2 . (4.3)

The most used method to solve (4.1) in the BA literature consists of applying the

Levenberg-Marquardt (LM) procedure coupled with the Schur complement trick and

an exact sparse solver such as sparse-Cholesky (we based our hybrid GPU/CPU im-

plementation on this). This is because LM provides fast and guaranteed convergence

properties. In addition, with the Schur complement trick we can first compute an ex-

pensive solution for a small subset of parameters (e.g. camera parameters) followed

by a straightforward back-substitution on a larger subset (e.g. point parameters).

A solver such as sparse-Cholesky exploits the sparse matrix nature of the normal

equations to become more memory and compute efficient than a dense solver. How-

ever, as we will see later, this is not an ideal algorithm for mapping computations

to a GPU, where inexact methods seem to excel.

4.2 Normal Equation

To simplify the BA formulation described next, we will follow closely the notation

used by Lourakis and Argyros [96] in their ‘Sparse Bundle Adjustment’ software

package.

Let us define a combined parameter vector by grouping the set of m cameras and

n points as follows:

P = (a>0 , ...,a
>
m−1, ...,b

>
0 , ...,b

>
n−1)> , (4.4)
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b0 b1

b2 b3

x0,0

x2,0
x1,0

x3,0

x0,1

x2,1

x1,1
x3,1

a0

a1

Figure 4.2: Bundle adjustment example consisting of 3D points bi (orange) and
cameras aj (yellow). A 2D measurement point xi,j (blue) represents the projection
of point bi on camera aj .

where aj ∈ SE(3) and bi ∈ R3.

Similarly, we define the measurement vector as:

X = (x>0,0, ...,x
>
0,m−1,x

>
1,0, ...,x

>
1,m−1, ...,x

>
n−1,0, ...,x

>
n−1,m−1)> , (4.5)

where x>i,j ∈ R2 represents the 2D measurement of point i in camera j.

Using the combined parameter vector 4.4 and measurement vector 4.5, we define

the residual vector as:

r = X−Q(P) , (4.6)

where Q(P) applies the projective transformation Q defined in 4.2 to the parameter

vector P. The gradient of r is given by:

∇r =
∂r

∂P
= −J , (4.7)

where J is the Jacobian of Q:

J =
∂Q

∂P
=
∂X

∂P
. (4.8)

Therefore we can express the error function defined in 4.3 as:

E(P) = r>r . (4.9)
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The minimum of E is achieved when a gradient is zero:

∇E = 2(∇r)
>r = −2J>r = 0 . (4.10)

To find a solution we begin by first linearly approximating (4.2) with a first-order

Taylor expansion around P̂ for a small step δP:

Q(P + δP) ≈ Q(P̂) + JδP . (4.11)

Then, starting from a close solution P̂0 (our initial 3D reconstruction and camera

poses) and measurements X, we iteratively use this linear approximation to find a

sequence {P̂1, P̂2, ...P̂
k} converging to a local minimum.

Replacing the linearised model from 4.11 in 4.6 we obtain:

r = X− (Q(P̂) + JδP) = X−Q(P̂)− JδP . (4.12)

Defining the reprojection error estimate as:

ε = X−Q(P̂) , (4.13)

and replacing it in 4.12 we get:

r = ε− JδP . (4.14)

With this in place we replace 4.14 in 4.10 obtaining:

−2J>(ε− JδP) = 0 , (4.15)

−2J>ε+ 2J>JδP = 0 . (4.16)

This leads to the following normal equation that we use to solve for δp:

J>JδP = J>ε . (4.17)

Thus, on each iteration, our local minimizer becomes:

Pnew = Pold + δP . (4.18)
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Figure 4.3: The bundle adjustment process solved with an iterative Levenberg-
Marquardt algorithm.

The Levenberg-Marquardt algorithm augments Equation (4.17) with a damping

term µ resulting in:

(J>J + µI)δP = J>ε . (4.19)

The damping term µ can be thought of as a steering variable that is dynamically

updated, allowing us to shift the solution along the direction of steepest-descent:

J>ε (slow but with guaranteed convergence) or Gauss-Newton: δp (fast quadratic

convergence but with possibilities of singularities).

If the reprojection error is reduced, the damping term µ is decreased, skewing the

solution towards a faster Gauss-Newton direction. If however we fail to reduce the

error, the damping term is increased to move along a safer steepest-descent direction

(see Figure 4.3).

4.3 Jacobian matrix structure

We will now analyse the structure of the BA optimisation problem with the aim of

understanding the role that parallel processing could play in a hybrid CPU/GPU
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implementation.

To facilitate understanding, we will initially concentrate on a problem consisting

of 2 cameras and 4 points, and assume that all points are visible across the camera

set.

Expanding the Jacobian matrix defined in 4.8 where each row corresponds to a

different data point and each column corresponds to a different parameter, we get:

J =



∂x̂0,0

∂a0

∂x̂0,0

∂a1

∂x̂0,0

∂b0

∂x̂0,0

∂b1

∂x̂0,0

∂b2

∂x̂0,0

∂b3
∂x̂0,1

∂a0

∂x̂0,1

∂a1

∂x̂0,1

∂b0

∂x̂0,1

∂b1

∂x̂0,1

∂b2

∂x̂0,1

∂b3
∂x̂1,0

∂a0

∂x̂1,0

∂a1

∂x̂1,0

∂b0

∂x̂1,0

∂b1

∂x̂1,0

∂b2

∂x̂1,0

∂b3
∂x̂1,1

∂a0

∂x̂1,1

∂a1

∂x̂1,1

∂b0

∂x̂1,1

∂b1

∂x̂1,1

∂b2

∂x̂1,1

∂b3
∂x̂2,0

∂a0

∂x̂2,0

∂a1

∂x̂2,0

∂b0

∂x̂2,0

∂b1

∂x̂2,0

∂b2

∂x̂2,0

∂b3
∂x̂2,1

∂a0

∂x̂2,1

∂a1

∂x̂2,1

∂b0

∂x̂2,1

∂b1

∂x̂2,1

∂b2

∂x̂2,1

∂b3
∂x̂3,0

∂a0

∂x̂3,0

∂a1

∂x̂3,0

∂b0

∂x̂3,0

∂b1

∂x̂3,0

∂b2

∂x̂3,0

∂b3
∂x̂3,1

∂a0

∂x̂3,1

∂a1

∂x̂3,1

∂b0

∂x̂3,1

∂b1

∂x̂3,1

∂b2

∂x̂3,1

∂b3


. (4.20)

As we will see in Section 4.4, the elements of the above matrix are also sub-matrices

because the data and model parameters are vectors.

Furthermore we will decompose the Jacobian matrix J based on two components,

one for the camera parameters aj and another for the point parameters bi:

Aij =
∂x̂i,j
∂aj

,Bij =
∂x̂i,j
∂bi

. (4.21)

Here the Frame Jacobian Aij expresses a differential change in the 2D estimate

x̂i,j due to changes in the camera parameters aj and likewise the Point Jacobian

Bij expresses a differential change of x̂i,j due to changes in the point parameters bi

(see Figure 4.4).

Note that
∂x̂i,j

∂ak
= 0, ∀j 6= k because changing the parameters of camera k has no

effect on the estimates at camera j. Similarly
∂x̂i,j

∂bk
= 0,∀i 6= k because the points

are assumed to be independent and therefore changing the parameters of point k has

no effect on the estimates at point i [66]. Therefore 4.20 simplifies to the following
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b0

a1

x0,1

b0

a1

x0,1

Figure 4.4: (left) The frame Jacobian A01 expresses a differential change in the 2D
estimate x̂0,1 due to a change ∂a1 in the camera parameters a1. (right) The point
Jacobian B01 expresses a differential change in the 2D estimate x̂0,1 due to a change
∂b0 in the point parameters b0.

sparse matrix:

J =



∂x̂0,0

∂a0
0

∂x̂0,0

∂b0
0 0 0

0
∂x̂0,1

∂a1

∂x̂0,1

∂b0
0 0 0

∂x̂1,0

∂a0
0 0

∂x̂1,0

∂b1
0 0

0
∂x̂1,1

∂a1
0

∂x̂1,1

∂b1
0 0

∂x̂2,0

∂a0
0 0 0

∂x̂2,0

∂b2
0

0
∂x̂2,1

∂a1
0 0

∂x̂2,1

∂b2
0

∂x̂3,0

∂a0
0 0 0 0

∂x̂3,0

∂b3

0
∂x̂3,1

∂a1
0 0 0

∂x̂3,1

∂b3


(4.22)

=



A00 0 B00 0 0 0

0 A01 B01 0 0 0

A10 0 0 B10 0 0

0 A11 0 B11 0 0

A20 0 0 0 B20 0

0 A21 0 0 B21 0

A30 0 0 0 0 B30

0 A31 0 0 0 B31


. (4.23)
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To compose the normal equation J>JδP = J>ε from 4.17, we define the following:

Uj =
∑
i

A>ijAij , (4.24)

Vi =
∑
j

B>ijBij , (4.25)

Wij = A>ijBij . (4.26)

Therefore J>J can be expressed compactly as:

J>J =



U0 0 W00 W10 W20 W30

0 U1 W01 W11 W21 W31

W>
00 W>

01 V0 0 0 0

W>
10 W>

11 0 V1 0 0

W>
20 W>

21 0 0 V2 0

W>
30 W>

31 0 0 0 V3


. (4.27)

We partition δP into two sets, one for the camera parameters and another for the

point parameters:

δP = [δa, δb]> . (4.28)

Similarly, we also partition J>ε into a camera parameters set and point parameters

set:

J>ε = [εaj , εbi
]> , (4.29)

εaj =
∑
i

A>ijεij , (4.30)

εbi
=
∑
j

B>ijεij . (4.31)

With this, the normal equation can be rewritten in block form as:

U0 0 W00 W10 W20 W30

0 U1 W01 W11 W21 W31

W>
00 W>

01 V0 0 0 0

W>
10 W>

11 0 V1 0 0

W>
20 W>

21 0 0 V2 0

W>
30 W>

31 0 0 0 V3





δa0

δa1

δb0

δb1

δb2

δb3


=



εa0

εa1

εb0

εb1

εb2

εb3


. (4.32)
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Notice how the top-left and bottom-right blocks form block diagonal matrices and

also the bottom-left is the transpose of the top-right block. We can further simplify

the above expression as: [
U∗ W

W> V∗

][
δa

δb

]
=

[
εa

εb

]
, (4.33)

where U∗ is the block diagonal matrix with elements being the sub-matrices U0,

U1, ..., Um−1 and similarly for V∗.

In this form, the solution for either δa or δb depends on both the camera and

point parameters, but by multiplying the above expression with:[
I −WV∗−1

0 I

]
, (4.34)

it can be simplified to:[
U∗ −WV∗−1W> 0

W> V∗

][
δa

δb

]
=

[
εa −WV∗−1εb

εb

]
. (4.35)

This allow us to compute the solution for camera parameters first by solving:

Sδa = εa −WV∗−1εb , (4.36)

S = U∗ −WV∗−1W> , (4.37)

where S is the Schur complement of V∗. This is more efficient as typically the

number of camera parameters is much smaller than the number of point parameters.

Finally the point parameters are solved with:

V∗δb = εb −W>δa . (4.38)

4.4 Frame and Point Jacobian matrices

Following the insights given in [42], we will present a closed form solution for the

frame Jacobian Aij and point Jacobian Bij matrices.

The rigid body transformation parametrised by aj = [R, t]> ∈ SE(3) rotates and

translates a point b into the camera frame of reference as follows:

y = Rb + t , (4.39)

y = [x, y, z]> . (4.40)
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From 4.2, the projected 2D position is given by:

x = Q(a,b) = Q(y) . (4.41)

Applying the chain rule to the point Jacobian B we get:

B =
∂Q

∂b
=
∂Q

∂y

∂y

∂b
. (4.42)

The first part ∂Q
∂y is given by:

∂Q

∂y
=

1

z

[
1 0 −x/z
0 1 −y/z

]
, (4.43)

while the second part becomes:

∂y

∂b
=
∂(Rb + t)

∂b
= R , (4.44)

therefore combining 4.43 and 4.44 into 4.42 we obtain:

B =
1

z

[
1 0 −x/z
0 1 −y/z

]
R . (4.45)

Applying the chain rule to the frame Jacobian A we get:

A =
∂Q

∂a
=
∂Q

∂y

∂y

∂a
. (4.46)

The first part ∂Q
∂y is already given by 4.43. For the second part ∂y

∂a , we will

expresses the differential transformation with respect to camera parameters using

an element ε ∈ so(3) of its tangent space:

∂y

∂a
≈ ∂ exp(ε)y

∂ε
= [G1, ...,G6]y , (4.47)

⇒ ∂y

∂a
=


1 0 0 0 z −y
0 1 0 −z 0 x

0 0 1 y −x 0

 . (4.48)

Finally combining 4.43 and 4.48 into 4.46 we obtain:

A =

1
z 0 − x

z2
−xy
z2

1 + x2

z2
−y
z

0 1
z − y

z2
−
(

1 + y2

z2

)
xy
z2

x
z

 . (4.49)
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Figure 4.5: Mapping BA sub-steps to the GPU and CPU.

4.5 Implementation details

We are now ready to consider how an efficient hybrid CPU/GPU solution should be

constructed.

Equation (4.19) may appear simple initially, but composing its terms is a com-

pute and memory intensive process. We have identified a series of sub-steps and

distinguished them according to how well they map to a GPU-only, CPU-only or a

hybrid implementation (see Figure 4.5).

We will elaborate on the implementation of a few key sub-steps to highlight the

implementation ideas.
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Figure 4.6: Error vector computation, an example of a GPU-only step.

1. Error Vector (GPU-only): We load the point parameter vector Pb =

{bi}n−1
i=0 into the GPU global memory and process each point by a differ-

ent thread by transforming them into the camera coordinate frame, projecting

them into 2D and subtracting them from the measurement vector X. The

resulting error vector ε is placed back into global memory. Note that this

procedure is repeated for each camera (Figure 4.6).

2. Error Vector Norm (Hybrid GPU/CPU): We load the previously com-

puted error vector ε and pairwise multiply it with itself, using one thread per

point. The vector norm χ2 is calculated by summing the product results with

a parallel reduction algorithm (See Section 3.8.3). Since we cannot synchronise

threads across blocks, the final norm is generated on the CPU (Figure 4.7).

3. Frame Jacobian (GPU-only): We need to generate a 2×6 frame Jacobian

matrix Aij per measurement (for each point on each camera where it is visible).

This represents the differential change in our 2D projection estimates due to

a change in camera parameters (Figure 4.8).

4. Point Jacobian (GPU-only): Similar to the previous step, we need to

generate a 2× 3 point Jacobian matrix Bij per measurement. This represents

the differential change in our 2D projection estimates due to a change in point

parameters (Figure 4.9).

5. V block matrix (GPU-only): As described before, J>J has a sparse-block
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Figure 4.7: Error vector norm computation, an example of a hybrid GPU/CPU
step.

Figure 4.8: Frame Jacobian computation, an example of a GPU-only step.

structure and V is a block-matrix of its lower diagonal elements, with Vi =∑
j(B

>
ijBij) being a 3 × 3 matrix (Figure 4.10). In this case a thread is

launched per point, multiplying the point Jacobians and adding the results

across cameras. Therefore we obtain a different Vi matrix per point.

6. U block matrix (Hybrid GPU/CPU): U is a block-matrix of the upper

diagonal elements of J>J, with Uj =
∑

i(A
>
ijAij) being a 6×6 matrix (Figure

4.11). A thread is launched per point and we need to synchronise them to

perform multiplication and addition across points for a particular camera.
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Figure 4.9: Point Jacobian computation, another GPU-only step.

Figure 4.10: V block matrix computation, a GPU-only step.

The final result is generated on the CPU.

Other sub-steps follow the same pattern as the examples above: independent

computations are suitable for straightforward parallelism on the GPU, however,

reduction operations typically need the cooperation of the CPU since there is no

thread synchronisation across GPU blocks. Once the normal equation is composed,

the actual solution is performed on the CPU using Cholesky factorisation.
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Figure 4.11: U block matrix computation, a hybrid GPU/CPU step.

4.6 Results

To evaluate the performance of our hybrid GPU/CPU bundle adjustment imple-

mentation, we generate synthetic point-cloud scenes and camera poses corrupted

by Gaussian noise, as seen in Figure 4.1. The scenes are created with increasing

number of points (from 100 to 250K) while keeping a fixed number of cameras (30).

We assume that all points remain visible across the camera set. For each scene, we

run our optimisation method 5 times and average the time for convergence. We do

the same for a recent CPU-only version [149]. We use desktop PC equipped with

an Intel i7-960 CPU running at 3.2GHz and an NIVIDIA GTX 480 GPU.

We achieved up to 10.5x speedup with our hybrid implementation compared to

the CPU-only version (see Figure 4.12 and 4.13). We can observe consistent im-

provements for problems sizes of hundred of thousands of points, up to about 250K

points and 30 cameras due to memory limitations. It is worth noting that under

closer examination, our improvements are only valid when our problem size sur-

passes around 360 points. This is because the benefits of parallel computations on

the GPU for a small problem are diminished due to transfer costs of data from main

memory to GPU memory plus the overhead of thread scheduling.

Figure 4.14 displays the overall timing of GPU kernels. We can see that the most

expensive computation is concentrated on computing the Schur complement of the
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Figure 4.12: Speedup of BA running on the GPU/CPU vs. CPU-only, as a function
of problem size (number of points). The sudden peaks of GPU performance at about
20K and 150K points are due to improved memory coalescing for those particular
problem sizes.

Figure 4.13: Runtime for BA on the GPU/CPU vs. CPU-only, as a function of
problem size (number of points).
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Figure 4.14: Overall time spend per GPU kernel (top) and order of calls for 3
iterations (bottom).

normal equation (about 50% of GPU time), followed by the partial computation of

the U block matrix. Unfortunately, the Schur complement is difficult to parallelise

as a whole and we resort to sequentially scheduling per-camera sub-tasks.

4.7 Difficulties

One of the reasons for the low performance of computing the U block matrix comes

from the parallel reduction of its large 6 × 6 sub-matrix elements across all points.

Each 6× 6 sub-matrix occupies 288 bytes of memory, which saturates shared mem-

ory and available registers, resulting in low occupancy (the ratio between the actual

number of scheduled threads and maximum possible number of working threads).

Table 4.1 details the occupancy calculation considering the hardware limitations

found on the Streaming Multiprocessors (SM) of NVIDIA GPUs with Fermi archi-

tecture:

Related to the previous issue is the fact that dealing with large matrices per

thread complicates opportunities for memory coalescing as depicted in Figure 4.15.

A GPU can group together memory access from continuous threads provided each

one request chunks of 2, 4 or 8 bytes. For the case of computing and storing a Uj
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Table 4.1: Occupancy calculation for the Uj matrix

Size of Uj 6× 6× 8 = 288 bytes
Shared memory per Streaming Multiprocessor(SM) 49152 bytes

Max thread count per SM 49152/288 = 170.6
Max thread count per SM as power of 2 128

Max allowed thread count per SM 1536
Achieved occupancy 128/1536 = 0.083

Figure 4.15: Inadequate memory coalescing case. The blue vectors represents coa-
lesced memory access where each thread reads consecutive addresses of either 2, 4
or 8 bytes. In red we see a case where a single thread access a large chunk of 288
bytes corresponding to loading/storing a single Uj matrix.

matrix per thread we can see that we largely move beyond the limit, requesting as

much as 288 bytes per thread.

4.8 Conclusion and Future Work

We have taken a relatively popular serial implementation of Bundle Adjustment

and decomposed it into a series of sub-steps, many of them being suitable for full

parallelisation on the GPU, while others are hybridly computed between the GPU

and CPU or on the CPU alone. This solution give us up to 10.5x speedup compared

to a CPU-only version.

However we can further improve this work in the following ways:
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1. Using different data structures, task decomposition or memory access patterns:

One way to eliminate the need to handle large matrices per thread is to ex-

press the actual matrix as a Structure of Arrays (SoA) instead of treating the

full set of matrices as an Array of matrix Structures (AoS) [104]. Also, our

kernels uses relatively large number of temporary variables resulting in poor

register utilisation; this could be alleviated having slimmer kernels with finer

task decomposition. Finally, the fragmented memory access patterns can be

improved by having threads to cooperatively load large matrices into shared

memory.

2. Using alternative optimisation algorithms that are better suited for GPUs:

For example, Wu et al. [165] demonstrated the superior performance of an

Inexact Newton method on the GPU, specifically the Linear Conjugate Gra-

dient (LCG) instead of the Exact Dense or Sparse Cholesky decomposition

such as the one we explored. One problem with the Cholesky decomposition is

that the initial unfactored sparse matrix can become dense after factorisation.

With the LCG the problem can be expressed without requiring to explicitly

represent the Jacobian or the Schur complement matrices. This greatly re-

duces the memory allocation needs, enabling them to solve larger problems.

In addition they identified floating point normalisation techniques to eliminate

the need to use double precision arithmetic in favour of single precision which

can have twice the speed on current generation of GPUs.

3. Abstracting algorithmic representations from the underlying platform imple-

mentation:

The mentioned improvements, being valid and necessary, impose a great deal

of programming effort for finding the right balance of computation and mem-

ory management across heterogeneous computing devices. Furthermore, the

programmer’s assumptions can break in newer hardware architectures such as

the family of integrated GPU and CPU (AMD Fusion or Intel SandyBridge),

with unified memory systems and zero data transfer costs. It is therefore desir-

able to abstract the algorithmic representation away from the implementation

details if we aim to hit peak performance on a variety of platforms and problem

sizes. This could lead to the development of a new Domain-Specific Language

(DSL) for SLAM, similar in spirit to Halide [126], a language that simplify the
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development of high-performance image processing code targeting a variety of

modern architectures.

A pure data-driven approach for performing joint map and camera optimisation is

at the core of traditional SLAM systems. However, the arrival of dense solutions like

KinectFusion [112] brought a new level of map resolution allowing to reason about

watertight surfaces and detached objects. Rather than ignoring the benefits of this

novel representation, in our following work we decided to attack the underlying

object-level structure observed in many man-made scenes, which as we will see in

the next chapter, substantially simplifies the optimisation problem while bringing

useful semantic information for interaction.
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Chapter 5

SLAM++: Simultaneous

Localisation and Mapping at

the Level of Objects

Most current real-time SLAM systems operate at the level of low-level primitives

(points, lines, patches or non-parametric surface representations such as depth maps),

which must be robustly matched, geometrically transformed and optimised over in

order that maps represent the intricacies of the real world. Modern processing hard-

ware permits ever-improving levels of detail and scale, and much interest is now

turning to semantic labelling of this geometry in terms of the objects and regions

that are known to exist in the scene. However, some thought about this process

reveals a huge amount of wasted computational effort; and the potential for a much

better way of taking account of domain knowledge in the loop of SLAM operation

itself.

In this chapter, we propose a paradigm for real-time localisation and mapping

which harnesses 3D object recognition to jump over low level geometry processing

and produce incrementally-built maps directly at the ‘object oriented’ level. As a

hand-held depth camera browses a cluttered scene, prior knowledge of the objects

likely to be repetitively present enables real-time 3D recognition and the creation

of a simple pose graph map of relative object locations. This graph is continuously
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Figure 5.1: (top) In SLAM++, a cluttered 3D scene is efficiently tracked and
mapped in real-time directly at the object level. (left) A live view at the current
camera pose and the synthetic rendered objects. (right) We contrast a raw depth
camera normal map with the corresponding high quality prediction from our object
graph, used both for camera tracking and for masking object search.

optimised as new measurements arrive, and enables always up-to-date, dense and

precise prediction of the next camera measurement. These predictions are used for

robust camera tracking and the generation of active search regions for further object

detection.

Our approach is enabled by efficient GPU-Compute parallel implementation of

recent advances in real-time 3D object detection and 6 DoF ICP-based pose refine-

92



5.1. Real-Time SLAM with Hand-Held Sensors

ment. We show that alongside the obvious benefit of an object-level scene descrip-

tion, this paradigm enables a vast compression of map storage compared to a dense

reconstruction system with similar predictive power; and that it easily enables large

scale loop closure, relocalisation and great potential for the use of domain-specific

priors.

5.1 Real-Time SLAM with Hand-Held Sensors

In SLAM, building an internally consistent map in real-time from a moving sensor

enables drift-free localisation during arbitrarily long periods of motion. We have

still not seen truly ‘pick up and play’ SLAM systems which can be embedded in

low-cost devices and used without concern or understanding by non-expert users,

but there has been much recent progress. Until recently, the best systems used

either monocular or stereo passive cameras. Sparse feature filtering methods like

[37] were improved on by ‘keyframe SLAM’ systems like PTAM [79] which used

bundle adjustment in parallel with tracking to enable high feature counts and more

accurate tracking.

Most recently, a breakthrough has been provided by ‘dense SLAM’ systems, which

take advantage of GPU-Compute processing hardware to reconstruct and track full

surface models, represented non-parametrically as meshes or implicit surfaces. While

this approach is possible with an RGB camera [113], commodity depth cameras

have now come to the fore in high performance, robust indoor 3D mapping, in

particular via the KinectFusion algorithm [112]. New developments such as [162]

have tackled scaling the method via a sliding volume, sub-blocking or octrees; but a

a truly scalable, multi-resolution, loop closure capable dense non-parametric surface

representation remains elusive, and will always be wasteful in environments with

symmetry.

From sparse feature-based SLAM, where the world is modelled as an unconnected

point cloud, to dense SLAM which assumes that scenes contain continuous surfaces,

we have seen an increase in the prior scene knowledge brought to bear. In SLAM++

we step up to the even stronger assumption that the world has intrinsic organisation

in the form of repeated objects. While we currently pre-define the objects expected

in a scene, we intend that the paradigm permits the objects in a scene to be identified
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and segmented automatically as salient, repeated elements.

Object SLAM has many characteristics of a return to feature-based SLAM meth-

ods. Unlike dense non-parametric approaches, the relatively few discrete entities in

the map makes it highly feasible to jointly optimise over all object positions to make

globally consistent maps. The fact that the map entities are now objects rather than

point features, however, puts us in a stronger position than ever before; tracking

one object in 6 DoF is enough to localise a camera, and reliable relocalisation of a

lost camera or loop closure detection can be performed on the basis of just a small

number of object measurements due to their high saliency. Further, and crucially,

instant recognition of objects provides great efficiency and robustness benefits via

the active approaches it permits to tracking and object detection, guided entirely

by the dense predictions we can make of the positions of known objects.

SLAM++ relates strongly to the growing interest in semantically labelling scene

reconstructions and maps, in both the computer vision and robotics communities,

though we stress the big difference between post-hoc labelling of geometry and the

closed loop, real-time algorithm we present. Some of the most sophisticated recent

work was by Kim et al. [78]. A depth camera is first used to scan a scene, similar in

scale and object content to the results we demonstrate later, and all data is fused

into a single large point cloud. Off-line, learned object models, with a degree of

variation to cope with a range of real object types, are then matched into the joint

scan, optimising both similarity and object configuration constraints. The results

are impressive, though the emphasis is on labelling rather than aiding mapping and

we can see problems with missing data which cannot be fixed with non-interactive

capture.

Other good work on labelling using RDB-D data was by Silberman [145] as well

as Ren et al. [129] who used kernel descriptors for appearance and shape to label

single depth camera images with object and region identity.

Several published approaches use object detection, like we do, with the aim of

not just labelling but actually improving reconstruction and tracking; but none of

these have taken the idea nearly as far as we have with the combination of real-time

processing, full 3D operation, dense prediction and a modern graph optimisation

back-end. To give a flavour of this work, Castle et al. [23] incorporated planar

object detection into sparse feature-based monocular SLAM [37]. These objects,
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once recognized via SIFT descriptors, improved the quality of SLAM due to their

known size and shape, though the objects were simple highly textured posters and

the scene scale small.

Also in an EKF SLAM paradigm, Ramos et al. [127] demonstrated a 2D laser

and camera system which used object recognition to generate discrete entities to

map (tree trunks) rather than using raw measurements. Finally, the same idea

that object recognition aids reconstruction has been used in off-line structure from

motion. Bao et al. [9] represented a scene as a set of points, objects and regions

in two-view SfM, jointly solving the labelling and reconstruction problem via graph

optimisation taking account the interactions between all scene entities.

5.2 Method

SLAM++ is overviewed in Figure 5.2, and detailed below.

5.2.1 Creating an Object Database

Before live operation in a certain scene, we rapidly make high quality 3D models of

repeatedly occurring objects via interactive scanning using KinectFusion [112] in a

controlled setting where the object can easily be circled without occlusion. A mesh

for the object is extracted from the truncated signed distance volume obtained from

KinectFusion using marching cubes [95]. A small amount of manual editing in a

mesh tool is performed to separate the object from the ground plane, and mark

it up with a coordinate frame such that domain-specific object constraints can be

applied. The reconstructed objects are then stored in a simple database.

5.2.2 SLAM Map Representation

Our representation of the world is a graph, where each node stores either the esti-

mated SE(3) pose (rotation and translation relative to a fixed world frame) Twoj of

object j, or Twi of the historical pose of the camera at timestep i (see Figure 5.16).

Each object node is annotated with a type from the object database. Each SE(3)

measurement of the pose of an object Zi,oj from the camera is stored in the graph as
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Twll

l

r r

Figure 5.2: Outline of the SLAM++ pipeline. Given a live depth map Dl, we first
compute a surface measurement in the form of a vertex and normal mapNl providing
input to the sequentially computed camera tracking and object detection pipelines.
(1) We track the live camera pose Twl with an iterative closest point approach
using the dense multi-object scene prediction captured in the current SLAM graph
G. (2) Next we attempt to detect objects, previously stored in a database, that are
present in the live frame, generating detection candidates with an estimated pose
in the scene. Candidates are first refined or rejected using a second ICP estimation
initialised with the detected pose. (3) We add successfully detected objects g into
the SLAM graph in the form of a object-pose vertex connected to the live estimated
camera-pose vertex via a measurement edge. (4) Rendering objects from the SLAM
graph produce a predicted depth Dr and normal map Nr into the live estimated
frame, enabling us to actively search only those pixels not described by current
objects in the graph. We run an individual ICP between each object and the live
image resulting in the addition of a new camera-object constraint into the SLAM
graph.

a factor (constraint) which links one camera pose and one object pose. Additional

factors can optionally be added to the graph; between camera poses to represent

camera-camera motion estimates (e.g. from ICP), or domain-specific structural pri-

ors, e.g. that certain types of objects must be grounded on the same plane. Details

on graph optimisation are given in Section 5.2.6 and Figure 5.16.

5.2.3 Real-Time Object Recognition via Shape Matching

We follow the approach of Drost et al. [41] for recognising the 6 DoF pose of 3D

objects, represented by meshes, in a depth image. We give details of our paral-

lel implementation, which achieves the real-time detection of multiple instances of

multiple objects we need by fully exploiting the fine-grained parallelism of GPUs.

As in the Generalised Hough Transform [8], in Drost et al.’s method an object

96



5.2. Method

Figure 5.3: Object recognition with active search. (top-left) Measured normal map
from sensor. (top-right) Predicted view from graph. (bottom-left) Undescribed
regions to be searched are in white. (bottom-right) Masked normal map used for
recognition.

is detected and simultaneously localised via the accumulation of votes in a param-

eter space. The basis of voting is the correspondence between Point-Pair Features

(PPFs): four-dimensional descriptors of the relative position and normals of pairs of

oriented points on the surface of an object. Points, with normal estimates, are ran-

domly sampled on a bilateral-filtered image from the depth camera. These samples

are paired up in all possible combinations to generate PPFs which vote for 6 DoF

model configurations containing a similar PPF.

A global description for each object mesh is quickly generated on the GPU by

discretising PPFs with similar values and storing them in search data structures built

using parallel primitive operations such as reduction, scan and sort (see Algorithm

1), provided by modern GPU template libraries such as Bolt [1]. Similar structures

are also built from each live frame. This process typically takes <5ms for 160K

PPFs and could also be used in the future to describe new object classes on the fly

as they are automatically segmented.

Matching similar features of the scene against the model can be efficiently per-
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Algorithm 1: Build global description from PPFs

input : A set of N point-pair features (PPF)
output: Set of search data structures

1 // Encode the PPF index and hash key

2 codes ← new array;
3 foreach i← 0 to N - 1 in parallel do
4 Compute the hash key hk from PPF i;
5 codes[i] = hk � 32 + i;

6 codes ← Sort(codes);

7 // Decode PPF index and hash key

8 key2ppfMap ← new array;
9 hashKeys ← new array;

10 foreach i← 0 to N - 1 in parallel do
11 key2ppfMap[i] = ∼(1 � 32) & code[i];
12 hashKeys[i] = code[i]� 32;

13 // Count PPF per hash key and remove duplicate keys

14 hashKeys, ppfCount ← Reduce(hashKeys, sumOp);

15 // Find the first PPF index of a block of PPFs in key2ppfMap having

equal hash key

16 firstPPFIndex ← ExclScan(ppfCount);

17 return hashKeys, ppfCount, firstPPFIndex, key2ppfMap;

formed in parallel via a vectorised binary search, producing a vote for each match.

Accumulation of votes into a shared buffer can be prohibitively expensive on the

GPU, where many threads would require atomic operations when incrementing a

common memory location to avoid race conditions. To overcome this, each vote is

represented as a 64-bit integer code (Figure 5.4), which can then be efficiently sorted

and reduced in parallel.

056

Scene Ref. Point Model Point Angle

313263

Figure 5.4: Packed 64-bit integer vote code. The first 6 bits encode the alignment
angle, followed by 26 bits for the model point and 32 bits for the scene reference
point.

Sorting puts corresponding model points, scene reference points and alignment

angles contiguously in memory. This is followed by a parallel reduction with a

sum operation to accumulate equal vote codes (Algorithm 2). After peak finding,

pose estimates for each scene reference point are clustered on the CPU according to

translation and rotation thresholds as in [41].
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Algorithm 2: Accumulate Votes

input : A set of M vote codes
output: Vote count per unique vote code

1 // Sort voteCodes in parallel

2 voteCodes ← Sort(voteCodes);

3 // Count votes with equal voteCode

4 voteCodes, voteCount ← Reduce(voteCodes, sumOp);

5 return voteCodes, voteCount;

Active Object Search

Standard application of Drost et al.’s recognition algorithm [41] in room scenes is

highly successful when objects occupy most of the camera’s field of view, but poor

for objects which are distant or partly occluded by other objects, due to poor sample

point coverage. It is here that we realise one of the major benefits of our in-the-loop

SLAM++ approach. The view prediction capabilities of the system mean that we

can generate a mask in image space for depth pixels which are not already described

by projected known objects. The measured depth images from the camera are

cropped using these masks and samples are only spread in the undescribed regions

(see Figure 5.3).

The result of object detection is often multiple cluster peaks, and quantised lo-

calisation results. These must be passed to ICP refinement as explained in the next

section.

5.2.4 Real-Time Object Recognition with Hough Forests

The method of Drost et al. [41] previously studied was proven to be successful on

objects containing little texture. Although we adapted the procedure to execute

faster via parallel operations on the GPU there are two main factors preventing it

to be more generally useful in an object-oriented SLAM setting, where we expect to

recognise hundreds of objects in real-time.

The first limiting factor has to do with the fact that the global description is

model-specific, requiring a separate data structure for each different object type

and therefore at runtime one has to sequentially test all the global descriptors.

Scalability is therefore linear in the number of object classes and as each detection
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typically takes between 5-8 ms we are limited to describing up to 5 classes to maintain

real-time execution speed without dropping camera frames (< 33 ms).

Another limitation is the underlying algorithmic complexity of O(n2) in the num-

ber of pixels to evaluate the point-pair features on. Our current strategy is to

randomly select a much smaller number of reference points (typically 20% or about

60K pixels on a VGA depth map) in order to maintain real-time speeds. Since the

selected reference points become the pivot points at which pose peaks are estimated,

incrementing this proportion is beneficial to achieve higher detection rates. At the

extreme, evaluating every pixel densely would allow us to handle very small ob-

jects, which is currently not possible with the method of Drost et al. as it will be

prohibitively too costly to execute.

Motivated by the excellent detection and runtime performance of learning-based

methods using random forests such the work of Lepetit et al. [91][90] on object

pose estimation, and Shotton et al. [141] for human pose recognition, we decided

to experiment with this alternative technique. While the early results achieved

here are promising, we expect to develop a more comprehensive study in the future

to compare against recent developments with similar goals such as the template-

based method of Hinterstoisser et al. [73] and the coordinate regression method of

Brachmann et al. [17].

Hough Forests for multi-class 3D object recognition in real-time

Following the training data extraction ideas from Lepetit and Fua [89], Shotton

et al. [141], Fanelli et al. [45] and Girshick et al. [60], we obtain training data from

synthetic renderings of 3D models as they have shown to be sufficiently descriptive

for learning-based methods while being cheap to generate using 3D graphics tech-

niques. We collect a database of 3D objects scanned with KinectFusion [112] (see

Figure 5.5) and edit them in a 3D modelling tool such that each object is cleanly

segmented from its background, and for each we define a coordinate system such

that its contact points to the supporting plane lay in the x-z plane.

In order to generate synthetic training data for each 3D model, we render depth

maps from vertices of a hemisphere centred on the object. As we will see in the next

Section, it is beneficial to render the models with a supporting plane. The hemi-
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Figure 5.5: 3D object database. We generate a collection of 3D objects modelled
with KinectFusion and use them to synthetically generate training data from partial
views.

sphere is created by refining the faces of an icosahedron twice, each time subdividing

the faces into four triangles. This creates 162 vertices but we only keep those above

the supporting x-z plane (a strategy similar to the template extraction procedure

of Hinterstoisser et al. [73]). The rendered depth maps are further corrupted by

Gaussian noise to better simulate measurement artefacts.

The virtual camera is assumed to be looking towards the object centre o from one

of the hemisphere vertices p (see Figure 5.6), having a camera pose matrix (in the

object coordinate frame) defined by:

Toc =


x̂x ŷx ẑx px

x̂y ŷy ẑy py

x̂z ŷz ẑz pz

0 0 0 1

 , (5.1)
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with orthonormal rotational components given by:

ẑ =
o− p

‖o− p‖
, (5.2)

x̂ =
dup × z

‖dup × z‖
, (5.3)

ŷ = ẑ× x̂ . (5.4)

Here dup is the upward direction of the world coordinate frame (we use dup =

[0, 1, 0]>). The inverse of the previous matrix is the object pose matrix (in the

camera coordinate frame), defined by:

Tco = T−1
oc =


x̂x x̂y x̂z −x̂ · p
ŷx ŷy ŷz −ŷ · p
ẑx ẑy ẑz −ẑ · p
0 0 0 1

 . (5.5)

Rather than extracting patches like Gall and Lempitsky [54], we randomly ex-

tract 500 training points per hemisphere vertex for each object class, using each

of the generated synthetic depth maps D. We define the following depth-invariant

comparison features following Shotton et al. [141]:

f(θ,D) = D
(

x +
u1

D(x)

)
−D

(
x +

u2

D(x)

)
, (5.6)

h(θ,D) =

0 if f(θ,D) < τ

1 otherwise ,
(5.7)

parametrised by θ = (x,u1,u2, τ), where u1 and u2 are two randomly chosen offsets

from a point x inside the object contour and τ is a threshold value (see Figure 5.10).

We also extract 500 background training points per hemisphere vertex from real

scenes not containing the objects of interest.

Similarly to Fanelli et al. [45], but now in 3D, we store offsets δ ∈ R3 from every

training point position x ∈ Ω ⊂ R2 towards the object centre o:

δ = Tcoo− V(x) , (5.8)

with V(x) = K−1ẋD(x) and K the camera intrinsic matrix. Additionally, we store

the forward direction vector ẑ ∈ R3. The offset and direction vectors will be used
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Figure 5.6: Hemisphere used to extract synthetic views of a 3D object (left). A
camera positioned at one of the hemisphere vertices looks towards the object centre
generating a synthetic depth map (top-right) and normal map (bottom-right).
Note that we ignore rotations about the view direction (camera is always upright)
as the predicted pose is expected to be corrected by ICP to some extent.

to predict at test time the position and orientation of the object respectively. We

use a normalised direction vector as this will allow the estimation of mean values

across a full unit sphere, compared to other unsuitable representations like euler

angles due to their circular domain. Our camera pose representation cannot cope

with in-plane rotations (i.e. roll), however we expect an upright camera setup with

minor deviations that can be corrected by the further ICP optimisation.

The sample labels φ = (δ, ẑ) are modelled as multivariate Gaussian such that

p(φ|L) = N (φ; φ̄,Σ) with Σ the covariance matrix. Like Fanelli et al. [45] we allow

only covariances among offset vectors or direction vectors but not between them.

At training time, the parameters θ are randomly sampled and we also randomly

choose the test that maximises the classification information gain metric Hc(S) or

regression metric Hr(S), except when the frequency of a particular class exceed 95%

or when the current tree level l ≥ D− 2, in which case we always use the regression

metric. Training stops when the maximum depth is achieved or the number of

samples in a node falls below a threshold (20 samples in our case). Statistics of the

samples reaching a leaf are extracted and for each leaf we only store the mean offset

vector δ̄, mean direction vector z̄ and trace tr(Σ).
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At test time we will use δ̄ + V(x) to predict the object position and the mean

forward direction vector z̄ to predict its orientation following Equations 5.1-5.5. We

densely sample all pixels from an input depth map and test against each of the for-

est’s trees. This process is easily parallelizable on the GPU and takes approximately

2ms for a VGA image (640× 480 pixels).

Only those pixels for which the reached leaf satisfies p(c|L) > 0.75, and tr(Σ) < 3

are used to predict the existence and pose of an object instance. The bottom row

of Figure 5.8 provides a visualisation of the dense class prediction. As can be seen,

there are sections of class ambiguity, particularly if we observe the backrest of the

two chairs on the middle and right side as they have similar geometry. More distinct

areas such as the lower support on the yellow chair class help to disambiguate the

two objects and this highlights the benefit of using dense predictions.

For the pixels passing the previous probability and variance thresholds we execute

clustering using the CPU via mean shift [29] in order to obtain object instances.

First, we randomly pick 5000 possible centres and assign the remaining pixels to each

cluster according to a compatibility criterion: translation < 10cm, rotation < 15◦,

and re-estimate cluster centres and memberships for up to 10 iterations or when the

centre moves below a threshold. Finally we discard clusters having less than 300

members. Figure 5.7 shows the cluster prediction for several objects in a synthetic

scene, while the top-row of Figure 5.8 shows the cluster with the maximum number

of members for single objects.

The generated clusters that are close to each other by less than half of the object

diameter are sorted by decreasing number of members. This is followed by the

execution of dense ICP [133], starting from the first element in the sorted list, in

order to complete the alignment of the estimated pose to the measured depth map.

We declare an object as detected if the number of correspondences is above 70%

of the predicted rendered pixels and stop applying ICP to the remaining clusters.

Figure 5.9 shows detected objects after ICP alignment on a real scene, alongside a

visualisation for class label prediction.
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Figure 5.7: Pose clusters for several objects detected in a synthetic scene. Solid
objects represent the ground truth.

Figure 5.8: (top-row) Pose cluster with maximum number of members. Solid
objects represent the ground truth. (bottom-row) Dense class prediction visu-
alisation. Each pixel is encoded with a colour for the class label with maximum
probability (green: table, blue: high chair, yellow: low chair, red: background)
and modulated by the probability itself such that brighter colours indicate higher
probability.
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Figure 5.9: Detected objects with multi-class Hough forest after alignment. (left)
Colour image of the scene, (middle) class prediction visualisation, (right) detected
objects after ICP alignment.

Experiments

In what follows we describe experimenting with different settings to achieve good

performance under varying noise levels. To measure the recognition performance we

generated 10 synthetic scenes like the one shown in Figure 5.7 and corrupted them

with Gaussian noise. All reported results are obtained after aligning objects with

ICP and we consider an object to be recognised if its difference in position is less

than 1/10 of the object diameter and its orientation differs by less than 15◦.

Using supporting regions: Contextual information has been shown to improve

recognition performance in tasks such as scene labelling [143][145]. Here we evaluate

the value of using a supporting plane where an object can rest. The synthetic images

generated with a plane now contain pixels with depth information surrounding the

target object as can be seen in Figure 5.10. Recognition results when ignoring the

supporting plane are shown in Figure 5.11 and when adding it in Figure 5.12. As

can be seen, adding the supporting planar region improves performance significantly

for certain classes such as big table, short table and bin. This might be explained

by the relative lack of features on those objects (large planar sections and vertical

symmetry) that are boosted by the addition of contextual information such as the

significant depth difference between the top of the table and the floor.

Distant views: We experimented with generating views at longer distances by

scaling the icosahedron to 2 and 3 times its original size, similar to the work by

Hinterstoisser et al. [73]. The results of this experiment are shown in Figure 5.13

and we compare this against Figure 5.12. Adding multiple scales does not improve

performance by much, as having depth invariant features seem to negate the need
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Figure 5.10: (left) A chair is rendered on top of a supporting plane to improve
recognition performance with the addition of context. (right) Rendered depth
map with two identical depth comparison feature examples at different places on
the object. A probe position (blue) landing on the left leg produces a low depth
comparison response based on the offset samples (red and green). A probe position
landing on the right side of the chair generates a higher feature response.

Figure 5.11: Object recognition rate when training without a supporting region,
using 500 training samples at a single hemisphere scale and a forest with 10 trees.
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Figure 5.12: Object recognition rate when training with a supporting region, using
500 training samples at a single hemisphere scale and a forest with 10 trees.

Figure 5.13: Object recognition rate when training with a hemisphere at different
scales, using a supporting plane, 500 training samples and a forest with 10 trees.

for multiscale sampling. The addition of samples at multiple scales also results in

a substantial increase in training time of about 10 hours compared to 2 hours for a

single scale.

Increasing sample size: Using more samples for training improves recognition

performance consistently across all classes. Comparing the previous Figure 5.12

against Figure 5.14 we can see an approximate 10% improvement in recognition

rate when increasing the total number of samples for a class from 500 to 2000.
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Figure 5.14: Object recognition rate when increasing the number of training samples,
using 2000 samples instead of 500, a supporting plane and a forest with 10 trees.

However training time also increases in a similar proportion, taking approximately

7.5 hours to complete.

Reducing the number of trees: While keeping a large sample number of 2000

we experimented with reducing the number of trees from 10 to 3 in an effort to speed

up training time. Surprisingly recognition performance is not affected much, except

for the short table object as seen in Figure 5.15 compared to Figure 5.14. A possible

explanation for the lower performance of the short table object might be due to the

reduced discriminative power of the trees as this class shares many features with the

low chair object since their horizontal planes are of the same height.

Hough forests statistics

Table 5.1 reports various performance indicators of the presented multi-class Hough

forest method and compares its execution speed to our GPU accelerated method of

Drost et al. presented in Section 5.2.4. This was executed on a high-performance

laptop equipped with an Intel i7 Quad Core CPU at 2.50GHz and NVidia GTX

580M GPU with 2GB of memory. The timing results are for the object recognition

without further ICP optimisations, which can take an additional 8 ms.

Training of the forest is done on the CPU with OpenMP, with one thread per
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Figure 5.15: Object recognition rate when reducing the number of trees in the
random forest from 10 to 3, using a supporting plane, 2000 samples and a single
hemisphere scale.

tree, while testing is done entirely on the GPU using CUDA, where each individual

pixel is passed through the forest in parallel. Clustering is performed on the CPU

and accelerated with OpenMP wherever possible.

Table 5.1: Multi-class Hough forests statistics

Class count (excl. background) 5
Training samples per class 2000
Number of trees 10
Maximum tree depth 15
Training time 7.5 hours
Test time on VGA image 2.2 ms
Clustering time 6.3 ms
Total Hough Forest time 8.5 ms
Drost et al. time per object 5 ms
Total Drost et al. time 25 ms

Multi-class Hough forests discussion and future work

We have seen in the previous section how the extension of the Hough forest method

for multi-class object recognition and pose estimation allowed us to speed up de-

tection performance compared to shape matching methods like Drost et al. even
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after being accelerated on the GPU. As highlighted by Lepetit et al. [91], treating

matching as a classification problem has the benefit of moving most of the detection

complexity to training time, and the use of simple comparison features does not

require time consuming filter preprocessing.

The downside of the method is the high training time of several hours to achieve

good performance which might preclude the use of the method on exploratory SLAM

scenarios where a only new objects are available.

One way to accelerate training time could be the use of completely random tests

at the split nodes without resorting to optimising the information gain metric. This

method of training is known as Extremely Randomised Trees [59] and it was similarly

explored by Lepetit et al. [89] who reported only a small loss of reliability but a

considerable speed-up in training time.

Similarly, Ozuysal et al. [122] noted that when the tests are chosen at random, the

classification rates do not depend on the tree structure itself but on the combination

of several binary tests and thus introduced simpler structures know as Ferns that are

much simpler to train and test, at the expense of a slight decreasing in discrimination

performance.

In the future we plan to experiment with the previously described methods for real-

time object training and recognition. In addition, to improve the experimental setup

and provide more standard performance metrics we need to develop a dataset of real-

scenes and appropriate ground thruth. Some recent efforts such as Hinterstoisser

et al. [73] and Brachmann et al. [17] provide such datasets and we hope to make

use of them to better assess this effort. We will also explore the addition of colour

features which can help to increase robustness and to recognise objects in the absence

of active depth sensing such as in mobile devices.

Many objects of interest are also non-rigid and this will present a challenge to the

previously studied methods. One way to cope with such cases would be to directly

regress object coordinates densely as shown by Taylor et al. [153] and deform the

sought object to fit the measured data.
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5.2.5 Camera Tracking and Accurate Object Pose Estimation

using ICP

Camera-Model Tracking: In KinectFusion [112], the up-to-date volumetric map

is leveraged to compute a view prediction into the previously estimated camera

pose, enabling estimation of the live camera using a fast dense iterative closest point

(ICP) algorithm [133]. In SLAM++, in contrast to the relatively incomplete models

available at early stages of mapping with KinectFusion, we track against a complete

high quality multi-object model prediction. Following [112], we compute a reference

view prediction of the current scene geometry consisting of a depth map Dr and

normal map Nr rendered into the previously estimated frames pose Twr representing

the 6 DoF rigid body transform defined as a member of the special Euclidean group

SE(3). We update the live camera to world transform Twl by estimating a sequence

of m incremental updates {T̃n
rl}mn=1 parametrised with a vector x ∈ R6 defining a

twist in SE(3), with T̃n=0
rl as the identity. We iteratively minimise the whole depth

image point-plane metric over all available valid pixels u ∈ Ω in the live depth map:

Ec(x) =
∑
u∈Ω

ψ (e(u,x)) , (5.9)

e(u,x) = Nr(u
′)>(exp(x)V̂l(u)− Vr(u

′)) . (5.10)

Here Vr(u
′) and Nr(u

′) are the projectively data associated predicted vertex and

normal estimated at a pixel correspondence u′ = π(KV̂l(u)), computed by projecting

the vertex Vl(u) at pixel u from the live depth map into the reference frame with

camera intrinsic matrix K and standard pin-hole projection function π. The current

live vertex is transformed into the reference frame using the current incremental

transform T̃n
rl:

V̂l(u) = T̃n
rlVl(u) , (5.11)

Vl(u) = K−1u̇Dl(u) , (5.12)

Vr(u
′) = K−1u̇′Dr(u

′) . (5.13)

We chose ψ as a robust Huber penalty function in place of the explicit point

compatibility check used in [112] which enables a soft outlier down weighting. A

Gauss-Newton based gradient descent on Equation (5.9) results in solution of the
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normal equations: ∑
u∈Ω

J(u)>J(u)x =
∑
u∈Ω

ψ
′
(e)J(u) , (5.14)

where J(u) = ∂e(x,u)
∂x is the Jacobian, and ψ′ computes the robust penalty function

derivative given the currently estimated error. We solve the 6×6 linear system using

Cholesky decomposition. Taking the solution vector x to an element in SE(3) via

the exponential map, we compose the computed incremental transform at iteration

n+ 1 onto the previous estimated transform T̃n
rl:

T̃n+1
rl ← exp(x)T̃n

rl . (5.15)

The estimated live camera pose Twl therefore results by composing the final in-

cremental transform T̃m
rl onto the previous frame pose:

Twl ← TwrT̃
m
rl . (5.16)

Tracking Convergence: We use a maximum of m = 10 iterations and check for

poor convergence of the optimisation process using two simple criteria. First, we do

not attempt to track against the predicted model if its pixel coverage is less than 1
8

of a full image. Second, after an optimisation iteration has completed we compute

the ratio of pixels in the live image which have been correctly matched with the

predicted model ascertained by discounting pixels which induce a point-plane error

greater than a specified magnitude εpp.

Tracking for Model Initialisation: We utilise the dense ICP pose estimation

and convergence check for two further key components in SLAM++. First, we note

that the real-world objects we use as features are often ambiguous, and not well

discriminated given a single view. Therefore, given a candidate object and detected

pose, we run camera-model ICP estimation on the detected object pose, and check

for convergence using the previously described criteria. We find that for correctly

detected objects, the pose estimates from the detector are erroneous within ±30◦

rotation, and ±50cm translation. This allows a more conservatively set threshold

εoi and early rejection of incorrect objects.

Camera-Object Pose Constraints: Given the active set of objects that have

been detected in SLAM++, we further estimate relative camera-object pose param-

eters which are used to induce constraints in the scene pose graph. To that end, we
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run the dense ICP estimate between the live frame and each model object currently

visible in the frame. The ability to compute an individual relative pose estimate

introduces the possibility to prune poorly initialised or incorrectly tracked objects

from the pose graph at a later date. By analysing the statistics of the camera-object

pose estimate’s convergence we can keep an inlier-outlier style count on the inserted

objects, and cull poorly performing ones.

5.2.6 Graph Optimisation

Figure 5.16: Example graph illustrating the pose of the moving camera over four
time steps Twi (red) as well as the poses of three static objects in the world Twoj

(blue). Observations of the object oj at time i are shown as binary camera-object
constraints Zi,oj (yellow) while the relative ICP constraints between two cameras
are shown as Zi,i+1 (orange). We also apply unary structural constraints Po1,f , Po2,f

and Po3,f encoding prior information.

We formulate the problem of estimating the historical poses of the depth cam-

era Twi at time i and the poses of the static objects Twoj as graph optimisation.

Zi,oj denotes the 6 DoF measurement of object j in frame i and Σ−1
i,oj

its inverse

measurement covariance which can be estimated using the approximated Hessian

Σ−1
i,oj

= J>J (with J being the Jacobian from the final iteration of the object ICP).

Zi,i+1 is the relative ICP constraint between camera i and i+1, with Σ−1
i,i+1 the cor-

responding inverse covariance. The absolute poses Twi and Twoj are variables which

are modified during the optimisation, while Zi,oj and Zi,i+1 are measurements and

therefore constants. All variables and measurements have 6 DoF and are represented

as members of SE(3). An example graph is shown in Figure 5.16.
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We minimize the sum over all measurement constraints:

Em =
∑
Zi,oj

|| log(Z−1
i,oj
·T−1

wi ·Twoj )||Σi,oj

+
∑
Zi,i+1

|| log(Z−1
i,i+1 ·T

−1
wi ·Twi+1)||Σi,i+1 , (5.17)

with ||x||Σ := x>Σ−1x the Mahalanobis distance and log(·) the logarithmic map of

SE(3). This generalised least squares problem is solved using Levenberg-Marquardt;

the underlying normal equation’s sparsity is exploited using a sparse Cholesky

solver [81]. The pose Jacobians are of the form ± ∂
∂εi

log(A · exp(ε) · B)|ε=0, ap-

proximated using higher order Baker-Campell-Haussdorf expansions [150].

Including Structural Priors

Additional information can be incorporated in the graph in order to improve the

robustness and accuracy of the optimisation problem. In our current implementation

we apply a structural planar prior that the objects are located on a common ground

plane. The world reference frame w is defined such that the x and z-axes lie within

the ground plane with the y-axis perpendicular into it. The ground plane is implicitly

detected from the initial observation Z1,o1 of the first object; its pose Twf remains

fixed during optimisation. To penalize divergence of the objects from the ground

plane, we augment the energy,

Em&p = Em +
∑
Poj ,f

|| log(P−1
oj ,f
·T−1

woj ·Twf)||Σoj ,f
, (5.18)

using a set of unary constraints Poj ,f = exp((υ>,θ>)>) with υ,θ ∈ R3 (see Fig-

ure 5.16). In particular, we set the translation along the y-axis, υ2 = 0, as well as

the rotational components about the x and z-axis to zero, θ1 = 0 and θ3 = 0. We

use the following inverse prior covariances:

Σ−1
oj ,f

= diag(0, wtrans, 0, wrot, 0, wrot) , (5.19)

with positive weights wtrans and wrot. Since the objects can be located anywhere

within the x−z plane and are not constrained in their rotation about the y-axis, the

corresponding weights are set to zero; the prior components υ1, υ3, θ2 do not affect

the energy and can be set to arbitrary values.
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5.2.7 Other Priors

The ground plane constraint can have value beyond the pose graph. We could guide

point-pair feature sampling and make votes for poses only in the unconstrained

degrees of freedom of objects. In the ICP method, again a prior could be used as

part of the energy minimisation procedure to pull it always towards scene-consistent

poses. While this is not yet implemented we at least cull hypotheses of object

positions far from the ground plane. Additional prior constraints such as object

intersection and affordances would be interesting to explore.

5.2.8 Relocalisation

When camera tracking is lost the system enters a relocalisation mode. Here a new

local graph is created and tracked from, and when it contains at least 3 objects it is

matched against the previously tracked long-term graph (see Figure 5.17). Graph

matching is achieved by considering both the local and long-term graphs as sets of

oriented points in a mesh that are fed into the same recognition procedure described

in Section 5.2.3. We use the position of the objects as vertices and their x-axes

as normals. The matched vertex with highest vote in the long-term graph is used

instead of the currently observed vertex in the local graph and camera tracking is

resumed from it, discarding the local map.

5.3 Results

The in-the-loop operation of our system is more effectively demonstrated by watch-

ing the SLAM++ videos in Appendix B, where the advantages of our method over

off-line scene labelling will be more obvious. We present demonstrations of a new

level of real-time localisation and mapping performance, surpassing previous SLAM

systems in the quality and density of geometry description obtained given the very

small footprint of our representation; and rivalling off-line multi-view scene labelling

systems in terms of object identification and configuration description.
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Figure 5.17: Relocalisation procedure. When tracking is lost a local graph (blue)
is created and matched against a long-term graph (red). (top) Scene with objects
and camera frustum when tracking is resumed a few frames after relocalisation.
(bottom) Oriented points extracted for matching. The connectivity depicts the
detection sequence and is not used by the recognition procedure.
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Figure 5.18: Loop closure. (left) Open loop drift during exploration of a room; the
two sets of objects shown in red were identified as corresponding. The full SLAM++
graph is displayed with yellow lines for camera-object constraints and orange lines
for camera-camera constraints. (middle) Imposing the new correspondences and
re-optimising the graph closes the loop and yields a more metric map. (right) For
visualisation purposes only (since raw scans are not normally saved in SLAM++),
we show a coloured point cloud after loop closure.

5.3.1 Loop Closure

Loop closure in SLAM occurs when a location is revisited after a period of neglect,

and the arising drift corrected. In SLAM++, small loops are regularly closed using

the standard ICP tracking mechanism. Larger loop closures (see Figure 5.18), where

the drift is too much to enable matching via predictive ICP, are detected in real-time

using a module based on matching fragments within the main long-term graph in

the same manner as in relocalisation (Section 5.2.8).

5.3.2 Large Scale Mapping

We have run SLAM++ in environments including the large common room shown in

Figure 5.1 (size 15×10×3m), with two types of chair and two types of round table,

all constrained to a common ground plane. The real-time process lasted around

10 minutes, including various loop closures and relocalisations due to lost tracking.

34 objects were mapped across the room. Figure 5.1 gives a good idea of mapping

performance. Note that there are no priors in the system concerning the regular

positioning of tables and chairs, only that they sit on the ground plane.
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Figure 5.19: When a mapped object is largely inconsistent with good measurements
(green) it is marked as invalid (red) and observations from it are stopped to avoid
corrupting the rest of the graph.

5.3.3 Moved Object Detection

We demonstrate the ability to detect the movement of objects, which fail ICP gating

due to inconsistency (Figure 5.19).

5.3.4 Augmented Reality with Objects

Finally, the ability to semantically predict complete surface geometry from partial

views allows novel context-aware AR capabilities such as path finding, to gracefully

avoid obstacles while reaching target objects. We apply this to command virtual

characters to navigate the scene and find places to sit as soon as the system is started

(without the need to scan a whole room). (Figure 5.20).

5.3.5 System statistics

Table 5.2 summarises the results when mapping the room shown in Figure 5.18

(10×6×3m) using a gaming laptop. We compare the memory footprint of SLAM++
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Figure 5.20: Context-aware augmented reality: virtual characters navigate the
mapped scene and automatically find sitting places.

with KinectFusion [112] for the same volume (assuming 4 Bytes/voxel, 128 voxel-

s/m).

Table 5.2: System statistics for mapping a large room

Framerate 20 fps
Camera Count 132
Object Count 35
Object Class Count 5
Edge Count 338
Graph Memory 350 KB
Database Memory 20 MB
KinectFusion Memory 1.4 GB
Approx. Compression Ratio 1/70

5.4 Conclusions and Future Work

We have shown that using high performance 3D object recognition in the loop per-

mits a new approach to real-time SLAM with large advantages in terms of efficient
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and semantic scene description. In particular we demonstrate how the tight inter-

action of recognition, mapping and tracking elements is mutually beneficial to all.

Currently our approach is well suited to locations like the interiors of public buildings

with many repeated, identical elements, but we believe is the first step on a path to

more generic SLAM methods which take advantage of objects with low-dimensional

shape variability or in the long term which can segment and define their own object

classes. Some non-object areas such as the floor are implicitly inferred (e.g. from

the objects it supports) however their precise extent is unknown.

In the next chapter we address some of these limitations as we present an efficient

real-time approach to densely maps an environment using bounded planes and sur-

fels. This can take advantage of the planarity of many parts of real-world scenes

for data regularisation and compression, which in contrast to SLAM++, is purely

data-driven as it does not need a pre-made database and still allows the capture of

useful semantic information.
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Chapter 6

Dense Planar SLAM

In augmented reality applications, the goals of SLAM systems which can operate in

unknown environments with hand-held or wearable cameras have now clearly pro-

gressed beyond pure localisation towards capturing significant information about the

scene to enable meaningful automatic annotation. We define a ‘dense SLAM’ system

as one which produces not a point cloud but a closed surface geometry scene model,

enabling every-pixel depth prediction and occlusion reasoning. A breakthrough in

real-time dense SLAM was provided by the KinectFusion algorithm [112], and it

was shown that in AR a dense geometric reconstruction can be annotated in any

number of interactive or automatic ways [74]. However, KinectFusion and related

methods [77][131][162] use non-parametric representations which are both heavy-

weight in terms of computing resources and lack semantic description.

In the previous chapter, we attacked both of these weaknesses by detecting in-

stances of known 3D objects in the live image stream from a hand-held depth camera

and creating a highly efficient object-level map consisting solely of the objects’ con-

figuration. The estimated object configuration is used to generate a dense surface

prediction for accurate and robust camera pose tracking using ICP as in KinectFu-

sion; and the known objects can easily be used as the basis for content-aware AR

effects. However, SLAM++ relies on a database of specific known objects only, and

apart from the ability to define and use a ground plane under objects such as chairs

and tables, cannot cope with non-object regions such as walls, which often have a

large extent well beyond the field of view of a camera.
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6. Dense Planar SLAM

Figure 6.1: Dense Planar SLAM in action. (top-left) The stairs of a house have
been mapped with both planar and non-planar region surfels. (top-right) Planar-
only regions. (bottom-left) Normal map shows high-quality reconstruction. Ob-
serve the lower quality normals on the highlighted red area lacking planar measure-
ments. (bottom-right) Some planar regions detected on a kitchen are used to
display user’s content.
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We believe that the crucial measure of the performance of a dense SLAM system

is what fraction of the pixels in each new image it is able to explain with its scene

model, and that this must be driven up closer to the near 100% that KinectFusion

achieves for the efficient and semantic object-based SLAM paradigm to be fully

competitive. This requires both the ability to model and use the non-object-like

regions of a scene; and to find and add new types of objects which are not present

in the prior database. In man-made scenes, both of these requirements strongly

motivate the capability to discover and model significant planar scene structures.

Planes are extremely common and often occupy large fractions of the field of view of

typical images from indoor scenes. Mapping them explains these pixels, potentially

with great efficiency; and crucially if all planes in a scene can be mapped then

the regions which are not planar are relatively few and are often clearly segmented

against the planar surfaces which surround them.

In this chapter we focus on the detection and modelling of accurate, bounded

planar regions with arbitrary boundary shape. These are extracted and refined over

time to form a real-time dense planar SLAM system using depth images such as

those produced by RGB-D sensors or via dense multi-view stereo reconstruction

methods [113]. While there are many planes in most man-made scenes, mapping

them is not as simple as identifying these and instantiating infinite planes in a map.

Rather, accurately representing the shape and extent of planes is crucial, and for

us this is what defines ‘Dense Planar SLAM’. Planar regions will often have irregu-

lar boundaries, or holes (when an object is on a table top, or hangs on a wall, for

instance). Starting from a surfel map generated in real-time using the point fusion

method of [77], we show how planar regions at arbitrary orientations can be seg-

mented and incrementally grown over time. We introduce an efficient representation

of the accurate extent of 3D planar regions using a 2D occupancy map approach.

This representation is incrementally extensible so that large planar regions can be

grown, refined and joined over long observation periods. Our representation also

allows on the fly compression and efficient use of memory and processing resources,

and we particularly show how it is amenable to parallel GPU-Compute implemen-

tation.

While this work was first motivated by high level goals in object aware SLAM, we

show that dense planar SLAM alone is very interesting and practical for a number

of novel AR applications; in particular the use of walls or other real-world surfaces
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for the display of information, which will be particularly attractive when used with

see-through AR headsets in the near future.

6.1 Related Work

Our work relates to previous real-time and off-line SLAM methods which have at-

tempted to efficiently map scenes using planar assumptions. In the broader context,

it relates to the literature on augmenting 3D reconstructions with semantic meaning.

Our approach, benefits from the simplification, efficiency and predictive power of

semantic model-fitting in the loop of real-time operation, a principle that also under-

pins our previous SLAM++ work [135] (see Chapter 5), which recognises instances

of objects from a pre-scanned library and directly builds a map at the object level.

This is in contrast to numerous approaches which consider reconstruction and se-

mantic labelling as processes to be applied one after the other (e.g. the sophisticated

work of Kim et al. [78]). Other work which does jointly perform reconstruction and

object fitting, such as that by Bao et al. [9], is far from being feasible in real-time

operation, unlike [135].

Earlier approaches for real-time SLAM using planes include work from Gee et al. [57]

and Chekhlov et al. [24]. Their systems used planes to replace point features and re-

duce the state space of estimation, because having large number of points becomes

unbearable in Kalman filter-based systems. This was improved by Carranza and

Calway [102] who directly mapped using planes and points without initialisation

delay.

Dou et al. [40] improved indoor 3D reconstruction quality via bundle adjustment

method that incorporated planar surface alignment errors in addition to 3D point

reprojection errors. Their system however was not aimed at real-time scenarios,

taking 3 seconds for plane extraction and a few minutes for global optimisation.

Trevor et al. [157] combined a Kinect sensor with a 2D laser range scanner to

map both close and distant line and plane features. Taguchi et al. [152] performed

camera tracking by detecting point and plane features and matching them in the

complete global map. However this approach resulted in perceptual aliasing and slow

tracking. Most recently Ataer-Cansizoglu et al. [6] improves on Taguchi’s method

by predicting the camera motion via a constant velocity model using optical flow, a

126



6.2. System Overview

condition which is difficult to satisfy with handheld camera scenarios. Our method

imposes no such assumption and instead directly tracks via ICP alignment from a

dense model, giving a fine pose update that eases the data-association task.

6.2 System Overview

5
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Figure 6.2: Outline of the Dense Planar SLAM pipeline. (1) A bilateral filtered
depth measurement Dl is transformed into a metric vertex Vb

l and normal N b
l map

and used for both camera pose estimation and plane detection. (2) We update the
live camera pose Twl by densely aligning with ICP the measured vertex map Vb

l

against the predicted vertex Vr and normal map Nr. (3) Planes are detected via
connected component labelling and incrementally extended with projective data-
association. (4) Modelled planes π̄i are merged and refined with a running average.
(5) View prediction is generated by rendering surfels P̄k via surface-splatting using
the reference pose Twr.

A schematic overview of our system is shown in Figure 6.2. Our starting point is

the Point-based Fusion method of Keller et al. [77] to densely map the environment

with surfels: small disk-shaped entities to describe locally planar regions without

connectivity information. Mapping from noisy depth sensors using surfels provides

easier management of data-association, insertion, averaging and removal of map

entities compared to structured meshes like triangles as well as memory savings

compared to voxel-based methods like KinectFusion [112].

In our approach, we aim to label each surfel in the 3D map either with one of a

number of discrete plane labels, or to leave it with no label if it is not part of any

major plane in the scene. Planar region surfels describe large areas with little or

no curvature and therefore share common properties (normals and closest distance

to the common plane) and are managed together to enforce this. Non-planar region

surfels on the other hand are located in areas of high curvature and are managed as

in the original method of Keller et al. [77].
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The dense and incremental mapping nature of our method enables easy data-

association of modelled and measured planes across consecutive frames: After the

current pose of the camera is estimated, plane association is simply done by counting

pixel-level matches of projected modelled planes into the currently measured depth

image and handling mismatches in a logical manner.

Data-associated planes are then converted into the same world reference frame

and refined with a running average. All modelled surfels belonging to the same

plane are enforced to share the same refined normals and closest distance, unlike

non-planar region surfels which average in isolation.

Finally, two or more overlapping modelled planes with similar properties are

merged together to incrementally extend areas that initially fail to connect due

to noise or occlusion.

While a particular planar region is still densely represented by many surfels, it

is worth mentioning that surfels’ positions and orientations are controlled by the

same set of plane parameters. This may seem redundant and memory inefficient

at first but allows us to densely represent complex planes with holes in the middle

that would otherwise be challenging to model and render incrementally using closed

polygons with hulls (e.g. as done in [157][152][6]).1 Section 6.4 demonstrates that

we can compress planes by a 9-to-1 ratio to achieve lightweight maps, particularly

of indoor environments composed for several planes.

6.2.1 Preliminaries

As in [77], we represent the SLAM map with a set of k unstructured surfels P̄k with

properties such as position v̄k ∈ R3, normal n̄k ∈ R3, radius r̄k ∈ R, confidence

c̄k ∈ R, and timestamp t̄k ∈ N.2 Additionally we include a plane ID ōk = i; i =

1, ..., p ∈ N with ōk = 0 signalling non-planar region surfels.

Overlapping surfels are representative of the local surface area with a radius size

chosen to minimise holes between neighbours; we compute them as: r̄k =
√

2v̄k(z)/f ,

with f the camera focal length.

A live depth measurement Dl is transformed into a metric vertex map Vl(u) =

1See for example the plane hole on the washing machine door in Figure 6.9.
2The timestamp is the moment at which a measurement is taken such as a simple frame counter.

128



6.2. System Overview

r

R

P0

P1P2

P3

P4 P5

u
v

R

R/2

Pa

Pb

c P0

P1P2

P3

P4 P5

Figure 6.3: (left) A surfel approximated by a hexagon. The orange circle with
radius r is the surfel disk inscribed in the hexagon while the green circle is cir-
cumscribed, having a radius R = 2√

3
r. (right) A hexagon partitioned as a tri-

angle strip for efficient drawing with OpenGL using the following vertex ordering:
P1, P2, P0, P3, P5, P4.

K−1u̇Dl(u), with K the camera intrinsic matrix, u = (x, y)> a pixel position in the

image domain u ∈ Ω ⊂ R2 and u̇ its homogeneous representation. The live normal

map Nl is simply generated from the vertex map by central differences.

Additionally, we apply a bilateral filter [155] to Dl generating discontinuity pre-

served vertex Vb
l and normal N b

l map with reduced noise.

To update the live camera to world transform Twl = [R, t] ∈ SE(3), R ∈ SO(3),

t ∈ R3; a pair of vertex map Vr and normal map Nr is rendered via surface-splatting

(see Section 6.2.2) using the previous reference pose Twr ∈ SE(3) that is incremen-

tally aligned to Vb
l using dense ICP [112] with a point-plane error metric [133]. This

produces a series of incremental updates {T̃n
rl}

m
n=1 composed together to generate

Twl ← TwrT̃
m
rl .

6.2.2 Surface-splatting

We approximate the disk shape of surfels with hexagons (see Figure 6.3). For this,

two arbitrary perpendicular vectors u, v to the normal n = [a, b, c]> are extracted
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such that u · n = 0 and v · n = 0:

n = ai + bj + ck , (6.1)

u = (b− c)i− aj + ak , (6.2)

v = n× u . (6.3)

The inscribed circle to the hexagon is the surfel being approximated allowing us

to draw it without any holes. A circumscribed circle to the hexagon with radius

R = 2√
3
r helps us to obtain the end points of the hexagon as follows:

Pa = c + rv ,

Pb = c− rv ,

P0 = c +Ru ,

P1 = Pa + (R/2)u ,

P2 = Pa − (R/2)u ,

P3 = c−Ru ,

P4 = Pb − (R/2)u ,

P5 = Pb + (R/2)u .

Rendering begins by filling OpenGL buffers containing the position, normal, ra-

dius and additional color properties and executing traditional point-based rendering

but instructing the system to use the geometry shader stage to amplify geometry

(see Listing A.3).

Thanks to this process, there is no need to explicitly store the end points of the

hexagon to represent the surfel as they can be procedurally generated in code from

the passed properties, thus saving memory space and bandwidth. Once the end-

points are identified, the hexagon is partitioned into a single triangle strip allowing

efficient OpenGL rendering (see Figure 6.3 right).

6.2.3 Relocalisation

In line with the dense nature of our system, we avoid extracting features to match

(such as SIFT or SURF) to retrieve known places and continue tracking when this is

lost. Instead we perform whole image encoding of keyframes using Ferns, following

130



6.3. Mapping with Planes

the method of Glocker et al. [61]. This enables the fast retrieval of near poses when

tracking is lost that are later refined with ICP on the dense model.

6.3 Mapping with Planes

Assuming an updated live camera pose Twl, mapping a scene consists of integrating

new measurements into the global model. To do so, a 4× super-resolution index map

Is is created by recording the point index k projected into the live frame at pixel

us = π(KsT−1
wl v̄k) via standard pin-hole projection function π. A super-resolution

approach is beneficial to avoid wrong correspondences when points project onto the

same pixel due to limited precision.

Modelled surfels can now be associated with measurements according to sensor

uncertainty, normals agreement, confidence value and distance to viewing ray [77],

producing data-associated pairs asurfels = {(i, j)}; i = 1, ..., k; j = 1, ..., w × h.

6.3.1 Planar Region Detection

Similar to Trevor et al. [156] we detect planes using connected component la-

belling [39]. This produces a label map L(u) = i; i = 1, ..., q ∈ N identifying to

which of the q measured planes each pixel belongs to. L(ui) = 0 is reserved for

regions with few connecting components or high curvature (see Figure 6.4 left).

Planes are parametrised by π = (nx, ny, nz, d)> with nπ = (nx, ny, nz)
> the plane

normal and d the closest distance to the common plane.

Detection proceeds by first computing a similarity map efficiently using the GPU.

This generates for every pixel a bitmask indicating if the pixel above and to the left

of the current one have similar plane distance and normal:

Mask(u) = (S(u,up)� 1) | S(u, left) , (6.4)

S(x,y) =


1 if ‖Vb

l (x) · N b
l (x)− Vb

l (y) · N b
l (y)‖

< δ1(Vb
l (x)(z))

2 and N b
l (x) · N b

l (y) > cos(Θ1)

0 otherwise ,
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Figure 6.4: Planar region detection. (left) Three planes have been detected with
connected component labelling using the measured vertex and normal maps. (right)
A depth discontinuity map is used to avoid labelling regions with low quality normals
(black pixels).

up = u− (0, 1)>, left = u− (1, 0)> .

The process continues on the CPU by assigning unique labels to similar and

contiguous pixels followed by a union-find algorithm to merge equivalent labels. To

prevent merging regions with low-quality normals, the process is avoided at depth-

discontinuity boundaries (see Figure 6.4 right), i.e. zeros in the map:

Disc(u) =
∏
ui∈ω

S(u,ui) . (6.5)

with ω a window with radius 3 centered in u.

Following [156], we discard regions with few connected pixels (< min-inliers).

From the rest we fit planes by performing Principal Component Analysis (PCA): first

the vertices are normalised by subtracting its mean v̂, followed by the computation

of a covariance matrix Σ and its corresponding eigendecomposition. The eigenvector

with minimum eigenvalue λmin becomes the plane normal nπ. The plane distance

is computed as: d = −nπ · v̂ while the plane curvature is: κ = λmin∑3
i=1 λi

. We discard

planes having curvature κ > max-curvature.

6.3.2 Data-Association with Planes

A SLAM system should be able to incrementally expand its map during exploration.

To enable this in our system we need to expand modelled planes as the camera

browses a new scene.
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Once the current sensor pose is estimated, modelled planar and non-planar region

surfels are projected into the current live frame. For each pixel u, one of several

data-association cases may occur (see Figure 6.5):

(A) A modelled plane and a measured plane intersect. This situation indicates

a data-association between the modelled and measured planes, producing pairs

aplanes = {(i, j)}; i = 1, ..., p; j = 1, ..., q.

(B) Modelled surfels lack a planar measurement. This indicates a non-planar

region due to high-curvature or noisy depth measurements preventing planes to be

fitted.

(C, D) Modelled planar region surfels lack planar measurement. Due to noise,

not every plane is expected to be detected on measured depth maps.

(E, F) Unmodelled (measured) planar regions. This happens when a new plane

is detected on the live depth map and is yet to be incorporated into the SLAM map.

(G) Invalid data. Occurs at pixels where the live depth data from the sensor is

invalid (has holes).

Cases C and D as well as E and F have to be disambiguated. To do this we first

identify the intersecting pixels (Case A) giving them a unique ID that is flooded

into the regions C and E, thus expanding the modelled plane of regions C and A

towards region E. At this point we are left with only cases D and F which are purely

modelled or unmodelled (measured) respectively.

This disambiguation is efficiently performed in practice via parallel operations

evaluated on the GPU [1][12]. First the set of pixels associations aplanes correspond-

ing to Case A are transformed into a hash value h = jρ + i (with ρ a constant

to ensure uniqueness) and sorted in parallel to group pixels belonging to the same

modelled plane first and same measured plane second. This is followed by a par-

allel reduction operation using the hash values as keys and a constant 1 (one) as

value, giving a list of possible associations and number of pixels supporting this:

{(j, i, count)}.

A measured plane π̄j could be associated to more than one modelled plane π̄i

due to noise or occlusion. To prevent wrong associations to the measured plane

we traverse the previous list looking for a modelled plane with similar coefficients:
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‖d′j−di‖ < δ2, n′j ·ni > cos(Θ2). Similar modelled planes IDs are added into a merge

map M and the one with maximum count count? >= min-assoc-count is chosen as

the final associated modelled plane and used as key for M.

Figure 6.5: Data-association cases. (left) The diagram shows all the possible pixel-
wise association cases when projecting the SLAM map into the measured live frame.
(right) Colour-coded visualisation of pixel-wise association cases. The top-left inset
shows the rgb data while the top-right shows the densely reconstructed planar and
non-planar region surfels.

6.3.3 Planar Region Refinement and Merging

A modelled plane π̄i is refined with the associated measured plane πj using a simple

running average. First the measured plane coefficients are transformed into the

world reference frame:

n′j = Rnj , (6.6)

d′j = −n′j · t + dj . (6.7)

The modelled plane coefficients are then refined with:

ni ←
wni + n′j
w + 1

, di ←
wdi + d′j
w + 1

, w ← w + 1 . (6.8)

We traverse the merge mapM and for each entry we rename the contained plane

IDs with that of the corresponding key.

Finally all surfels belonging to the measured plane πj are projected onto the

refined modelled plane π̄i.
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6.3.4 Non-Planar region surfels mapping

Surfels not having planar region measurements have their associated properties up-

dated with a running average α weighted for radial noise as in [77]. This is repro-

duced here for easier reading:

v̄k ←
c̄kv̄k + αTwlvl

c̄k + α
, n̄k ←

c̄kn̄k + αRnl

c̄k + α
, (6.9)

r̄k ←
c̄kr̄k + αrl

c̄k + α
, c̄k ← c̄k + α , t̄k ← t . (6.10)

6.4 Map Compression

Planar region surfels need to densely populate their area of coverage, however many

of their properties are shared between them (normals, radius size, confidence, times-

tamp and plane ID). Furthermore their planar position requires a two-dimensional

representation only.

We compress planar regions whenever they become non-visible (i.e. outside the

view frustum). First we execute frustum culling by intersecting the plane bounding

box with each of the 6 planes enclosing the frustum. Only if the planar region does

not intersect all of them we can safely compress the plane, move its data down

the memory hierarchy (i.e. from GPU memory to RAM or disk) and reclaim the

working GPU memory. This form of occlusion culling also helps to maintain an

almost consistent frame rate independent of map size, while reducing the need for

additional space partitioning techniques like octrees.

Compression begins by performing an additional PCA step in order to estimate

the major x-y axis of the extended plane. As in the plane fitting procedure, we

first normalise the vertices by subtracting its mean v̂, followed by calculation of the

covariance matrix Σ and corresponding eigendecomposition to obtain the x-y axis.

We can think of the plane compression mechanism as a way of representing the

plane as a binary image: with on-pixels signalling the areas of coverage and off-

pixels for holes (see Figure 6.6). To do so we will convert vertex coordinates into

pixel locations in a Virtual Image of dimensions: wvi × hvi. In practice both di-

mensions are set to 65536, allowing us to represent planes with dimensions in the

range (−32.768m,−32.768m) to (32.767m, 32.767m) at millimetre accuracy. The
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Figure 6.6: (left)Virtual Image with on-pixels surfels (orange) representing planar
region coverage. The coloured coordinate frame are the eigenvectors centred at the
plane centroid, while the black coordinate frame is the virtual image origin. (top-
right) Non-planar region surfels around a region of high curvature need to explicitly
represent individual position and orientation information. (bottom-right) Planar
region surfels are evenly organised and share common properties. Note : Surfel
radius size reduced for easier visualisation.

fixed virtual image dimensions allow us to further linearise the coordinates in 1D.

Computing the compressed index of a surfel is detailed below:

vc = v − v̂ , (6.11)

vp = (xaxis · vc,yaxis · vc)
> , (6.12)

vvi = round(vp × 1000) , (6.13)

vo = vvi + (wvi, hvi)
>/2 , (6.14)

index = vo(y) × wvi + vo(x) . (6.15)

Here vc is the normalised (centred) vertex, vp is the vertex on the plane after

projecting the vc coordinates with the plane axis, vvi is the vertex on the virtual

image with integer units pre-scaled to preserve millimetre accuracy, vo is the vertex

on the top-left reference frame, finally index is the linearised vo coordinates in 1D.

In this way planar region surfels are compressed with an approximate ratio of
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6.4. Map Compression

Figure 6.7: Chart showing the map data size of planar and non-planar region surfels
with and without compression.

9-to-1 as we only need to store their indices with 4 bytes per surfel.3 In contrast,

non-planar region surfels require 36 bytes each: vertices (3 floats), normals (2 floats),

radius (1 float), confidence (1 float), timestamp (1 uint), plane ID (1 uint).

Scenes composed of planar and non-planar region surfels produces combined com-

pression ratios of about 2.27. Some compression results on real and synthetic data

are shown on the chart in Figure 6.7.

Further compression ratios could be achieved for example by performing run-

length encoding of on-pixels but this is not explored yet.

Decompression is trivially achieved by performing the inverse compression steps

(6.15 - 6.11) and in practice both tasks take less than 2ms, allowing online operation.

3Planar regions’ surfels share the same normal, radius, confidence, timestamp and plane ID.
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6.5 Results

Quantitative experiments using synthetic scenes were performed to measure the

quality of tracking with and without planar mapping. Qualitative results of the

enhanced planar representation are shown for real scenes in Figures 6.1, 6.9 and

6.10 obtained with the Asus Xtion Pro RGB-D sensor.

The plane detection parameters were set to min-inliers = 1000, δ1 = 0.01m,

δ2 = 0.2m, Θ1 = Θ2 = 20◦, max-curvature = 0.00015, and min-assoc-count = 100.

The noise characteristics of the depth sensor make plane detection only usable

in the close range (< 4m). Our thresholds discourage false-positives by discard-

ing planes with large-curvature (as described in Section 6.3.1). Nevertheless, the

fact that mapping and tracking are still possible in the absence of plane detection

reinforces the integrated planar/non-planar approach presented.

6.5.1 Synthetic scenes

We evaluate our system on synthetic scenes with ground truth camera poses for

two trajectories produced by Handa et al. [63]. Depth maps are further corrupted

by the noise model proposed by Barron and Malik [10] to create data closer to the

Kinect sensor. Reconstructions results of the ‘living room’ sequence are shown on

Figure 6.8.

Table 6.1 summarises the Absolute Trajectory Error (ATE) as proposed by Sturm

et al. [151]. ATE computes the absolute difference between the ground truth and

estimated poses after alignment.

Although tracking from a globally consistent dense model is shown to be already

of high quality [112] we can see from the RMSE values that using planar regions

surfels decreases the trajectory error slightly, this is because the scene contains a

large number of planar regions affected by noise and alleviated earlier by our method

(compared to KinectFusion [112] or Point-based Fusion [77] that require a few frames

to denoise).

While the RMSE of trajectory-0 is large compared to trajectory-1 it is worth

highlighting that trajectory-0 is challenging when tracking with ICP since the camera
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cannot be locked based on 2 planes only (wall and ceiling) and therefore large drift

occurs.4 This artefact was also reported in [63] section VI-D-1.

Table 6.1: Absolute Trajectory Error (ATE) in synthetic scene

Error
trajectory-0 trajectory-1

non-planar planar non-planar planar
RMSE 0.254134 0.246437 0.018997 0.016940
Mean 0.222794 0.218559 0.016906 0.015043

Median 0.179679 0.182547 0.014714 0.016449
Std 0.122258 0.113857 0.008666 0.007789
Min 0.055287 0.070420 0.003252 0.002228
Max 0.728229 0.645284 0.032742 0.028430

6.5.2 Real-world scenes

Examples of real-world scenes are shown in Figure 6.1, 6.9 and 6.10. Here the stairs

of a house and an apartment have been reconstructed and major planes parametrised

incrementally and in real-time. The first case could be particularly useful for stair-

climbing robots navigating new environments.

6.5.3 Augmented Reality with dense planar maps

We can take advantage of the dense and real-time nature of our system to perform

novel Augmented Reality (AR) interactions with fine occlusion handling, requiring

very little user input.

As a first example, we let the user choose a set of planes to augment the original

input with an application display using the Oculus Rift paired with an Xtion sensor

(see Figure 6.11 and the Dense Planar SLAM videos in Appendix B), essentially

converting the real-world into a window manager. To enable this, we first extract

the bounding-box of the selected plane(s) and convert it into a quad polygon for

efficient texture mapping. This feature could also be very useful in see-through AR

headsets as it can replace small floating widgets with large projections on planes

without interfering with the wearer’s field of view (e.g. a limiting factor in the

current Google Glass).

4This can be seen on minute 0:32 at: http://youtu.be/4O-OaV0h4AQ.

139



6. Dense Planar SLAM

Another useful example is virtually replacing the floor style of a house many times

until the user is satisfied with the result (see Figure 6.12).

The idea of overlaying information on real planes instead of floating windows

allows the user to safely navigate environments without fear of collisions and make

tasks like zooming in/out as natural as walking closer/further from surfaces.

6.5.4 System Statistics

Table 6.2 summarises the results when mapping the stairs sequence shown in Figure

6.1. This was executed on a high-performance laptop equipped with an Intel i7

Quad Core CPU at 2.50GHz and NVidia GTX 580M GPU with 2GB of memory.

Table 6.2: System statistics for the stairs sequence

Memory usage
Non-Planar region surfels count 1,566,063
Planar region surfels count 4,159,902
Plane Count 30
Point-Based Fusion Memory [77] 196.58 MB
Dense Planar SLAM Memory (this work) 69.64 MB
Compression Ratio 2.82

Timings
Frame Prediction 11.8 ms
ICP 6.08ms
Plane Detection 10.1 ms
Data Association 24.02 ms
Averaging 2.58 ms
Surfel Addition/Removal 9.4 ms
Compression and Decompression 1.8 ms
Total time 65.98 ms
Frame Rate 15.16 fps

While the overhead of plane detection, data association and compression are not

present in systems like [77], we note that further optimisation can be easily engi-

neered to increase frame rate such as moving mapping to a lower priority thread as

in Klein et al. [79].
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6.6 Conclusions and Future Work

We have presented a Dense Planar SLAM algorithm which identifies, merges and

compresses the arbitrary planar regions which are present in many man-made scenes,

and leads to an efficient, robust and real-time plane-aware SLAM system.

In addition, we have shown the highly practical AR applications this permits, in

particular the use of planar regions for the display of information in a very natural

manner which will fit well with see-through head mounted displays.

We remain interested in our long-term goals of a fully object-based SLAM system

within which this planar mapping will form a crucial component.

Adding a graph-based loop closure optimisation for consistency over long loopy

trajectories is a clear short-term goal, and we hope that standard methods as used

in [135] will be suitable here. Though careful thought has to be given to how non-

planar regions of surfels should be treated when the locations of planes is optimised

due to loop closure constraints; presumably each small blob of non-planar surfels

should be attached and adjusted rigidly with the same transformation of one or

more of its neighbouring planar regions rather than being broken up or sheared.

Also, we will continue to work on using these non-planar regions to extend a library

of object types; the main challenge here is rapid learning of efficient detectors for

these new object types during real-time operation when the resources for extravagant

training are not available.
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Figure 6.8: Synthetic scene reconstruction of a living room. (top) Displaying both
planar and non-planar regions surfels. (bottom) In clockwise order: Colour output,
normal map, non-planar region surfels only, planar region surfels only.

142



6.6. Conclusions and Future Work

Figure 6.9: Real scene reconstruction of an apartment. (top) Displaying both
planar and non-planar regions surfels. (bottom) In clockwise order: Colour output,
Normal Map, Non-Planar region surfels only, Planar region surfels only.
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Figure 6.10: Real scene reconstruction of a desktop. (top) Displaying both pla-
nar and non-planar regions surfels. (bottom) In clockwise order: Colour output,
Normal Map, Non-Planar region surfels only, Planar region surfels only.
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Figure 6.11: Facebook Wall on a real wall using the Oculus Rift. The user chooses
a wall from which to read his Facebook Wall.
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Figure 6.12: Floor carpet change. The ground plane is selected and overlaid with a
new carpet.
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Chapter 7

Conclusions

Having described the core work of our research in the past few chapters, we now

summarise the novel contributions provided to the field of SLAM and discuss its

current limitations and possible workarounds. Finally we provide some ideas of

future avenues to explore for creating more compelling semantic SLAM systems.

7.1 Contributions

In Chapter 1 we defined what the theme of Dense Semantic SLAM is about: a

system capable of identifying meaningful discrete elements in a map using all avail-

able sensory information within the loop of SLAM itself, for the purpose of self-

localisation and complex interaction; we also envisaged future applications enabled

by this technology. Later we described the evolution of SLAM leading to corner-

stone components that we base our research on, such as dense SLAM systems like

KinectFusion.

To enable semantic SLAM capabilities, in Chapter 2 we reviewed state-of-the-art

approaches for object recognition and scene labelling, which revealed the limitations

of the methods to deal with real-time requirements and new sensory inputs like

depth sensors.

In SLAM we have requirements such as real-time processing and mobile operation.
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However, the practice of using the information from every pixel to enhance the

robustness of SLAM challenges the capabilities of traditional CPU architectures.

Therefore, in Chapter 3 in addition to discussing the mathematical preliminaries,

we also reviewed the commodity parallel processing available via GPU architectures

as well as the programming models needed to control their operation that we used

to design our novel algorithms.

We developed a strategy to accelerate Bundle Adjustment in Chapter 4 using a

hybrid CPU/GPU solution, achieving up to 10.5x speedup compared to a CPU-only

version. The architectural demands of having a discrete GPU with its own memory

subsystem made the approach suitable when optimising more than 360 points but

less than approximately 250K and 30 cameras due to the cost of memory transfers

and lack of virtual memory support. Other architectural challenges that constrained

the approach were the little shared memory available when performing reductions

and also limited opportunities for memory coalescing.

We concluded the chapter by providing insights to overcome those limitations,

namely by using different data structures like structure of arrays (SoA) to maximise

memory coalescing, the use of another optimisation algorithm known as Linear Con-

jugate Gradient that would reduce the memory requirements, and the need for a

domain-specific language that would simplify the algorithmic description for par-

allel operation while maximising opportunities for acceleration in current and new

hardware architectures.

In Chapter 5 we presented our SLAM++ system, which takes advantage of using

objects in the loop of SLAM itself, following the assumption that many scenes con-

sist of repeated, domain-specific objects and structures. This offers the descriptive

and predictive power of SLAM systems which perform dense surface reconstruction,

but with a huge representation compression. To do so, we extended two object

recognition approaches based on shape matching and Hough forests and made them

operate at real-time speeds on the GPU. The recognised objects provide 6 DoF

camera-object constraints which feed into an explicit graph of objects, continually

refined by efficient pose-graph optimisation. The object graph enables predictions

for accurate ICP-based camera to model tracking at each live frame, and efficient

active search for new objects in undescribed image regions.

The enhanced object-level representation enables real-time incremental SLAM in
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large, cluttered environments, including loop closure, relocalisation and the detec-

tion of moved objects. Prior knowledge of objects also brings new opportunities

for augmented reality and robotics interactions, since the stored objects can be an-

notated with non-visual information such as purpose, weight, and grasping regions.

The SLAM++ approach however requires a pre-processing stage consisting of build-

ing the database prior to execution and it will only operate if known objects can be

found.

Finally, in Chapter 6 we developed a new system called Dense Planar SLAM

that can directly map a new environment using bounded planes and surfels. The

new method offers the every-pixel descriptive power of the latest dense SLAM ap-

proaches, but takes advantage directly of the planarity of many parts of real-world

scenes via a data-driven process to directly regularize planar regions and represent

their accurate extent efficiently using an occupancy approach with on-line com-

pression. Large areas can be mapped efficiently and with useful semantic planar

structure which enables intuitive and useful AR applications such as using any wall

or other planar surface in a scene to display a user’s content.

7.2 Discussion and Future Research

We have demonstrated the benefits of incorporating higher-level entities in the loop

of SLAM itself such as the use of objects and planar regions. Throughout our work

we have also emphasised the importance of parallel GPU architectures to enable

real-time operation of algorithms such as bundle adjustment, object recognition and

plane detection using all the available sensory information.

The most straightforward next steps would be to blend the contributions presented

in the previous three chapters. First by unifying Dense Planar SLAM with SLAM++

we would be able to parametrise planar regions and objects such that operation of the

system in a new environment is not compromised due to a limited object database.

To easily extend the database, knowledge of planar regions would be beneficial as

it can help to segment new objects on-the-fly if we consider that most objects of

interest have a supporting planar region.

To be able to generate globally consistent maps, we could rely on the graph

approach as presented in Section 5.2.6 and extend it to incorporate planar entities.
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Early experiments to do so however revealed some problems arising from the use

of unstructured surfels, as the optimisation of planes alone generates gaps between

planar and non-planar regions. Therefore, more thought should be given to the

right way to incorporate neighbouring and visibility constraints, possibly following

the mass-spring approach used for physics simulation [154]. In order to optimise such

large scale models of surfels not belonging to either planes or objects, the insights

gained in developing GPU-accelerated bundle adjustment would be beneficial.

Another piece of future work is to address object recognition with scalability

in mind. For that, development of tools to create a large database of objects,

annotated with ground truth pose and other useful metadata is a requirement to

explore better algorithms. We need to consider methods for near real-time learning,

perhaps by the use of Extremely Randomised Trees [59] or Random Ferns [122] and

combine them with Information Retrieval ideas to handle large-scale datasets. In

a practical setting, we would like to see a Dense Semantic SLAM system deployed

to a large number of users backed by a centralised database that is continuously

being extended. It is therefore imperative to address scalability to thousands or

even millions of objects without sacrificing real-time tracking. Some strategies to

simplify the scalability requirement would be to incorporate contextual signals such

as GPS and constraining the search space by scene types, such as office interiors

compared to houses.

In addition, it will be interesting to investigate the minimal number of view-

points required to regress object pose considering that an ICP alignment will take

place afterwards. Our choice of viewpoint sampling consisting of 162 vertices on a

hemisphere is somehow arbitrary but seemed to perform well using view-based ICP

with a point-plane error metric [133]. Other methods such as Fast ICP [51] with a

much wider basin of convergence might require less coverage and should be worth

investigating.

We believe that an ideal semantic SLAM system would be best described with a

scene graph, incorporating not only object instances but also hierarchical parent-

child relationships between composite objects, as well other non object parametri-

sation like planar regions and scene lighting. A possible scene graph structure for

an indoor scene is illustrated in Figure 7.1. In addition, being able to add much

more metadata like grasping regions and weight would have practical applications

in robotics, augmented reality and related disciplines.
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Scene

Lamp Sofa Chair 1 Chair 2 Cabinet

Shape

Shape
Appearance

Shape
Appearance
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Camera
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Figure 7.1: An example scene graph. (top) The living room scene to be described by
the graph. (bottom) A simplified scene graph consisting of group container nodes
(blue), transformation nodes (orange), shape nodes storing 3D geometric information
(green) and material nodes storing texture maps (yellow). Notice how the two chairs
share a common shape and appearance nodes, while the camera does not need such
information as it can be completely described by its transformation node.
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Listing A.1: Host side launching of Parallel Sum reduction with CUDA

1 void main(void)

2 {

3 int elementCount = 32768;

4
5 // Create input array on host

6 std::vector <float > h_inputArr(elementCount );

7 // [...] Fill input array with data

8
9 // Create input array on device

10 float *d_inputArr = NULL;

11 cudaMalloc ((void **)& d_inputArr , sizeof(float )* elementCount );

12
13 //Copy input data from host to device

14 cudaMemcpy(d_inputArr , &h_inputArr [0],

15 sizeof(float) * elementCount , cudaMemcpyHostToDevice );

16
17 // Organise threads into blocks and grids

18 int blockSize = 256; // threads in block

19 int gridSize = elementCount/blockSize; // blocks in grid

20
21 // Create results array for each block

22 //plus an additional slot for the final sum

23 float *d_blockSumArr = 0;

24 cudaMalloc ((void **)& d_blockSumArr ,sizeof(float )*( gridSize +1));

25
26 // Execute kernel to compute partial sums per block

27 cuBlockSumReduction <<<gridSize ,

28 blockSize ,

29 blockSize * sizeof(float)>>>(

30 // output

31 d_blockSumArr ,

32 // input

33 d_inputArr , elementCount );

34
35 // Execute kernel again with a single block

36 //to complete the partial sums

37 cuBlockSumReduction <<<1,

38 gridSize ,

39 gridSize * sizeof(float)>>>(

40 // output

41 d_blockSumArr + gridSize , // pointer to additional slot

42 // input

43 d_blockSumArr , gridSize );

44
45 //Copy single result data from device to host

46 float sumResult = 0;

47 cudaMemcpy (&sumResult , d_blockSumArr + gridSize ,

48 sizeof(float), cudaMemcpyDeviceToHost );

49
50 // Release device arrays

51 cudaFree(d_inputArr ); cudaFree(d_blockSumArr );

52 }
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Listing A.2: Parallel Sum reduction in CUDA

1 __global__ void cuBlockSumReduction(

2 // output

3 float* d_blockSumArr ,

4 // input

5 const float* d_inputArr ,

6 const int elementCount)

7 {

8 extern __shared__ float cache [];

9
10 // Compute the Global Thread ID

11 int id = threadIdx.x + blockIdx.x*blockDim.x;

12
13 // Thread ID within a block

14 int cacheID = threadIdx.x;

15
16 //Load thread data item into shared memory

17 float x = 0;

18 if(id < elementCount)

19 {

20 x = d_inputArr[cacheID ];

21 }

22 cache[cacheID] = x;

23
24 // Ensure all threads in block have written to shared memory

25 __syncthreads ();

26
27 int offset = blockDim.x/2;

28 while(offset != 0)

29 {

30 if(cacheID < offset)

31 {

32 cache[cacheID] += cache[cacheID + offset ];

33 }

34
35 // Ensure all threads in block have written to shared memory

36 __syncthreads ();

37 offset /= 2;

38 }

39
40 // Final result of a block is at the first element of cache

41 if(cacheID == 0)

42 {

43 d_blockSumArr[blockIdx.x] = cache [0];

44 }

45 }

155



A. Code Listing

Listing A.3: Geometry Shader to generate a surfel from an oriented point

1 #define HEXRADIUS 1.154700538 // 2/sqrt (3)

2
3 POINT

4 TRIANGLE_OUT

5 void gsSurfel(float3 center : POSITION ,

6 float3 color : COLOR ,

7 float3 normal : TEXCOORD0 ,

8 float inradius : TEXCOORD1 ,

9 uniform float4x4 mvp_mat : state.matrix.mvp)

10 {

11 float circumradius = HEXRADIUS*inradius;

12 float halfcircumradius = circumradius / 2.0f;

13
14 // Generate two axis on surfel plane

15 float3 axisU =

16 float3(normal.y - normal.z, -normal.x, normal.x));

17 // axisV is perpendicular to normal and axisU

18 float3 axisV = cross(normal , axisU);

19
20 //Top and Bottom points in inscribed circle

21 float3 pa = center + axisV*inradius; //top

22 float3 pb = center - axisV*inradius; // bottom

23
24 //End points of hexagon in world space

25 float4 p0_w = float4(center + axisU*circumradius , 1);

26 float4 p1_w = float4(pa + axisU*halfcircumradius , 1);

27 float4 p2_w = float4(pa - axisU*halfcircumradius , 1);

28 float4 p3_w = float4(center - axisU*circumradius , 1);

29 float4 p4_w = float4(pb - axisU*halfcircumradius , 1);

30 float4 p5_w = float4(pb + axisU*halfcircumradius , 1);

31
32 //End points in image space

33 float4 p0_i = mul(mvp_mat , p0_w);

34 float4 p1_i = mul(mvp_mat , p1_w);

35 float4 p2_i = mul(mvp_mat , p2_w);

36 float4 p3_i = mul(mvp_mat , p3_w);

37 float4 p4_i = mul(mvp_mat , p4_w);

38 float4 p5_i = mul(mvp_mat , p5_w);

39
40 //Emit amplified geometry

41 emitVertex(p1_i : POSITION , color : COLOR );

42 emitVertex(p2_i : POSITION , color : COLOR );

43 emitVertex(p0_i : POSITION , color : COLOR );

44 emitVertex(p3_i : POSITION , color : COLOR );

45 emitVertex(p5_i : POSITION , color : COLOR );

46 emitVertex(p4_i : POSITION , color : COLOR );

47 restartStrip ();

48 }
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Video Material
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B. Video Material

SLAM++: Simultaneous Localisation and
Mapping at the Level of Objects.
R. F. Salas-Moreno, R. A. Newcombe, H.
Strasdat, P. H. J. Kelly, and A. J. Davison.
CVPR 2013.
http://youtu.be/tmrAh1CqCRo

SLAM++ Demo.
System demonstration at the Imperial
Festival 2013.
http://youtu.be/6IU4e8yUdis

Dense Planar SLAM.
R. F. Salas-Moreno, B. Glocker, P. H. J.
Kelly, and A. J. Davison. ISMAR 2014.
http://youtu.be/KOG7yTz1iTA

Dense Planar SLAM Demo.
System demonstration running on the
Oculust Rift.
http://youtu.be/1ozadUAwE5Q
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